
University of British Columbia

CPSC 111, Intro to Computation

Jan-Apr 2006

Tamara Munzner

Mathematical Operations, Static Methods

Lecture 9, Thu Feb 2 2006

http://www.cs.ubc.ca/~tmm/courses/cpsc111-06-spr

based on slides by Kurt Eiselt

Reading

! Re-read Chapter 4.3-4.5 (today)

! Next week: Chapter 6 all (6.1-6.4)

News

! Weekly Questions due today

! Midterm reminder: Tue Feb 7, 18:30 - 20:00

! Geography 100 & 200

! Discovery Forum – here, right after class

! Computer Science And Medicine: Where
Technology Meets Biology

! you can see demos of what I do when I’m not
teaching!

Recap: Commenting Code

! Conventions

! explain what classes and methods do

! plus anywhere that you've done something

nonobvious

! often better to say why than what

! not useful
int wishes = 3; // set wishes to 3

! useful
int wishes = 3; // follow fairy tale convention

Recap: javadoc Comments

! Specific format for method and class header

comments

! running javadoc program will automatically generate

HTML documentation

! Rules

! /** to start, first sentence used for method summary

! @param tag for parameter name and explanation

! @return tag for return value explanation

! other tags: @author, @version

! */ to end

! Running
 % javadoc Die.java

 % javadoc *.java

Recap: Cleanup Pass

! Would we hand in our code as it stands?

! good use of whitespace?

! well commented?

! every class, method, parameter, return value

! clear, descriptive variable naming conventions?

! constants vs. variables or magic numbers?

! fields initialized?

! good structure?

! ideal: do as you go

! commenting first is a great idea!

! acceptable: clean up before declaring victory

Finishing Point and PointTest Formal vs. Actual Parameters

! formal parameter: in declaration of class

! actual parameter: passed in when method is

called

! variable names may or may not match

! if parameter is primitive type

! call by value: value of actual parameter copied

into formal parameter when method is called

! changes made to formal parameter inside

method body will not be reflected in actual

parameter value outside of method

! if parameter is object: covered later

Scope

! Fields of class are have class scope:
accessible to any class member

! in Die and Point class implementation, fields
accessed by all class methods

! Parameters of method and any variables
declared within body of method have local
scope: accessible only to that method

! not to any other part of your code

! In general, scope of a variable is block of
code within which it is declared

! block of code is defined by braces { }

Objectives

! Understand how to use mathematical

shorthand operators

! Understand when values will be implicitly

converted

! Understand how to use static variables and

methods

Increment and Decrement

! Often want to increment or decrement by 1

! obvious way to increment
! count = count + 1;

! assignment statement breakdown

! retrieve value stored with variable count

! add 1 to that value

! store new sum back into same variable count

! obvious way to decrement
! count = count - 1;

Shorthand Operators

! Java shorthand
! count++; // same as count = count + 1;

! count--; // same as count = count - 1;

! note no whitespace between variable name

and operator

! Similar shorthand for assignment
! tigers += 5; // like tigers=tigers+5;

! lions -= 3; // like lions=lions-3;

! bunnies *= 2; // like bunnies=bunnies*2;

! dinos /= 100; // like dinos=dinos/100;

Shorthand Assignment Operators

! what value ends up assigned to total?
int total = 5;

int current = 4;

total *= current + 3;

! remember that Java evaluates right before left of =

! first right side is evaluated: result is 7

! total *= 7;

! total = total * 7;

! total = 5 * 7;

! total = 35;

Data Conversion

! Math in your head

! 1/3 same as .33333333333333333….

! Math in Java: it depends!

 int a = 1 / 3;

 double b = 1 / 3;

 int c = 1.0 / 3.0;

 double d = 1.0 / 3.0;

Data Conversion

! Math in your head

! 1/3 same as .33333333333333333….

! Math in Java: it depends!

 int a = 1 / 3; // a is 0

 double b = 1 / 3; // b is 0.0

 int c = 1.0 / 3.0; // Java’s not happy

 double d = 1.0 / 3.0; // d is 0.333333333

Data Conversion

! Consider each case

 int a = 1 / 3; // a is 0

! Literals 1 and 3 are integers

! Arithmetic with integers results in integer

! fractional part truncated (discarded)

! So 0 is value assigned to a

Data Conversion

! Consider each case

 double b = 1 / 3; // b is 0.0

! Literals 1 and 3 are integers

! Arithmetic with integers results in integer

! fractional part truncated (discarded)

! So 0 is result on right side

! Left side expects double

! integer 0 is converted to floating point 0.0

! So 0.0 is value assigned to b

Data Conversion

! Consider each case

 int c = 1.0 / 3.0; // Java’s not happy

! Literals 1.0 and 3.0 are doubles

! Arithmetic with doubles results in double

! results is 0.333333....

! Left side expects int not double

! fractional part would have to be truncated

! Java wants to make sure you know you’d lose

fractional information

! could be explicit with cast

int c = (int) (1.0 / 3.0); //cast placates Java

Data Conversion

! Consider each case

 double d = 1.0 / 3.0; // d is 0.33333333

! Literals 1.0 and 3.0 are doubles

! Arithmetic with doubles results in double

! results is 0.333333....

! Right side double can hold value

! well... just approximation of repeating value!

! finite number of bits to hold infinite sequence

! roundoff errors can be major problem

! CPSC 302, 303 cover in more detail

Data Conversion

! Casting: explicit data conversion

! Widening: conversion from one data type to another
type with equal or greater amount of space to store
value

! widening conversions safer because don’t lose
information (except for roundoff)

! Narrowing: conversion from one type to another
type with less space to store value

! important information may be lost

! avoid narrowing conversions!

Data Conversion

! Which of these is

! not a conversion?

! widening conversion?

! narrowing conversion?

 int a = 1 / 3; // a is 0

 double b = 1 / 3; // b is 0.0

 int c = 1.0 / 3.0; // Java’s not happy

 double d = 1.0 / 3.0; // d is 0.3333333333333333

Assignment Conversion

! Assignment conversion: value of one type

assigned to variable of other type, so must be

converted to new type

! implicit, happens automatically

! Java allows widening but not narrowing

through assignment

Promotion

! Second kind of data conversion

! happens when expression contains mixed data types

! example:

 int hours_worked = 40;
 double pay_rate = 5.25;

 double total_pay = hours_worked * pay_rate;

! To perform multiplication, Java promotes value
assigned to hours_worked to floating point value

! produces floating point result

! implicit, widening

Data Conversion

! No such thing as automatic demoting

! would be narrowing!

 int hours_worked = 40;
 double pay_rate = 5.25;
 int total_pay = hours_worked * pay_rate; // error

! can use casting to explicitly narrow

int total_pay = hours_worked * (int) pay_rate;

Modulus Operator

! computes remainder when second operand divided
into first

! sign of result is sign of numerator

! if both operands integer, returns integer

! if both operands floating point, returns floating point

! operator is %

int num1 = 8, num2 = 13;

double num3 = 3.7;

System.out.println(num1 % 3);

System.out.println(num2 % -13);

System.out.println(num3 % 3.2);

System.out.println(-num3 % 3);

Questions?

Static Variables

public class Giraffe {

private double neckLength;

public Giraffe(double neckLength) {

this.necklength = necklength;

 }

public void sayHowTall() {

 System.out.println(“Neck is “ + neckLength);

 }

}

Static Variables

public class Giraffe {
private double neckLength;
public Giraffe(double neckLength) {
this.necklength = necklength;

 }
public void sayHowTall() {
 System.out.println(“Neck is “ + neckLength);

 }
}

! how would we keep track of how many giraffes
we’ve made?
! need a way to declare variable that "belongs" to

class definition itself

! as opposed to variable included with every instance
(object) of the class

Static Variables

public class Giraffe {
private static int numGiraffes;
private double neckLength;
public Giraffe(double neckLength) {
this.necklength = necklength;

 }
public void sayHowTall() {
 System.out.println(“Neck is “ + neckLength);

 }
}

! static variable: variable shared among all instances
of class
! aka class variable

! use "static" as modifier in variable declaration

Static Variables

public class Giraffe {

private static int numGiraffes;

private double neckLength;

public Giraffe(double neckLength) {

this.necklength = necklength;

 numGiraffes++;

 }

public void sayHowTall() {

 System.out.println(“Neck is “ + neckLength);

 }

}

! updating static variable is straightforward

! increment in constructor

Static Variables

! Static variable shared among all instances of
class

! Only one copy of static variable for all objects
of class

! Thus changing value of static variable in one
object changes it for all others objects too!

! Memory space for a static variable
established first time containing class is
referenced in program

Static Methods

! Static method "belongs" to the class itself

! not to objects that are instances of class

! aka class method

! Do not have to instantiate object of class in

order to invoke static method of that class

! Can use class name instead of object name

to invoke static method

Static Methods

public class Giraffe {

private static int numGiraffes;

private double neckLength;

public Giraffe(double neckLength) {

this.necklength = necklength;

 numGiraffes++;

 }

public void sayHowTall() {

 System.out.println("Neck is " + neckLength);

 }

public static int getGiraffeCount() {

 return numGiraffes;

 }

}

! static method example

Calling Static Method Example

public class UseGiraffes

{

 public static void main (String[] args)

 {

 System.out.println("Total Giraffes: " +
Giraffe.getGiraffeCount());

 Giraffe fred = new Giraffe(200);

 Giraffe bobby = new Giraffe(220);

 Giraffe ethel = new Giraffe(190);

 Giraffe hortense = new Giraffe(250);

 System.out.println("Total Giraffes: " +
Giraffe.getGiraffeCount());

 }

}

! Note that Giraffe is class name, not object name!
! at first line haven’t created any Giraffe objects yet

Static Methods

! Static methods do not operate in context of
particular object

! cannot reference instance variables because they
exist only in an instance of a class

! compiler will give error if static method attempts to
use nonstatic variable

! Static method can reference static variables

! because static variables exist independent of specific
objects

! Therefore, the main method can access only static
or local variables.

Static Methods

public class UseGiraffes

{

 public static void main (String[] args)

 {

 System.out.println("Total Giraffes: " +
Giraffe.getGiraffeCount());

 Giraffe fred = new Giraffe(200);

 Giraffe bobby = new Giraffe(220);

 Giraffe ethel = new Giraffe(190);

 Giraffe hortense = new Giraffe(250);

 System.out.println("Total Giraffes: " +
Giraffe.getGiraffeCount());

 }

}

! Now you know what all these words mean
! main method can access only static or local variables

Static Methods in java.Math

! Java provides you with many pre-existing static methods
! Package java.lang.Math is part of basic Java environment

! you can use static methods provided by Math class

! examples:

> Math.sqrt(36)
6.0
> Math.sin(90)
0.8939966636005579
> Math.sin(Math.toRadians(90))
1.0
> Math.max(54,70)
70
> Math.round(3.14159)
3

> Math.random()
0.7843919693319797
> Math.random()
0.4253202368928023
> Math.pow(2,3)
8.0
> Math.pow(3,2)
9.0
> Math.log(1000)
6.907755278982137
> Math.log10(1000)
3.0

