University of British Columbia
CPSC 111, Intro to Computation
Jan-Apr 2006

Tamara Munzner

Class Design

Lecture 6, Tue Jan 24 2006

based on slides by Paul Carter

http://www.cs.ubc.ca/~tmm/courses/cpsc111-06-spr

Reading This Week
m Chap 3

Recap: Methods and Parameters

= Methods are how objects are manipulated

= pass information to methods with parameters

= inputs to method call

= tell charAt method which character in the String object we're
interested in

= methods can have multiple parameters
= APl specifies how many, and what type

= two types of parameters
= explicit parameters given between parens
= implicit parameter is object itself

String firstname = "Alphonse";
char thirdchar = firstname.charAt(2);

/ N

object method parameter

Recap: Return Values

s Methods can have return values
= Example: charAt method result
m return value, the character 'n', is stored in

thirdchar
String firstname = "kangaroo";
char thirdchar = firstname.charAt(2);
return value object method parameter

m Not all methods have return values
s No return value indicated as void

Recap: Constructors and Parameters

= Many classes have more than one
constructor, taking different parameters

m use API docs to pick which one to use based
on what initial data you have

Constructor Summary

String()
Initializes a newly created string object so that it represents an empty character
sequence.

String(String original)

Initializes a newly created string object so that it represents the same sequence of
characters as the argument; in other words, the newly created string is a copy of the
argument string.

animal = new String();

animal = new String("kangaroo") ;

Recap: Keyboard Input

= \Want to type on keyboard and have Java program
read in what we type

= Store it in variable to use later

m Scanner class does the trick
m jJava.util.Scanner

= nicer than System.in, the analog of System.out

Recap: Importing Packages

m Collections of related classes grouped into
packages

= tell Java which packages to keep track of with
iImport statement

= again, check API to find which package
contains desired class

= No need to import String, System.out
because core java.lang packages

automatically imported

Recap: Scanner Class Example

import java.util.Scanner;

public class Echo

{

public static void main (String[] args)

{
String message;
Scanner scan = new Scanner (System.in);
System.out.println ("Enter a line of text: ");

message = scan.nextLine()
System.out.println ("You entered: \""
+ message + "\"");

= Print out the message on the display

}
}

Escape Characters

= How can you make a String that has quotes?
m String foo = “oh so cool”;

m String bar = “oh so \“cool\”, more so”;
14

m Escape character: backslash
= general principle

Objectives

= understand principles of abstraction and
encapsulation

= understand how to design new classes using
these principles

m understand how to implement new classes in
Java

Creating Classes and Objects

m S0 far you've seen how to use classes
created by others

= Now let’s think about how to create our own
= Example: rolling dice

m doesn’t exist already in Java API

= we need to design

= we need to implement

m Start with two design principles

Abstraction

m Abstraction: process whereby we
= hide non-essential details
= provide a view that is relevant

= Often want different layers of abstraction
depending on what is relevant

Encapsulation

m Encapsulation: process whereby

= iInner workings made inaccessible to protect
them and maintain their integrity

m operations can be performed by user only
through well-defined interface.

m aka information hiding

m Cell phone example
= iInner workings encapsulated in hand set
= cell phone users can’t get at them

= intuitive interface makes using them easy
= Without understanding how they actually work

Approach

= Apply principles of abstraction and
encapsulation to classes we design and
iImplement

= Same idea as examples from dally life
= only in software

Designing Die Class

= Blueprint for constructing objects of type Die

= Think of manufacturing airplanes
= build one blueprint
s manufacture many instances from it
= Consider two viewpoints
= client programmer: want to use Die object in
a program
m designer: creator of Die class

Client Programmer

= \WWhat operations does client programmer
need?

= what methods should we create for Die?

Designer

= Decide on inner workings
= implementation of class

m Objects need state

= attributes that distinguish one instance from
another

= many names for these
= State variables
= fields
= attributes
= data members
= What fields should we create for Die?

Information Hiding

= Hide fields from client programmer
= Maintain their integrity

= allow us flexibility to change them without
affecting code written by client programmer

= Parnas' Law:
= "Only what is hidden can by changed without risk."

Public vs Private

= public keyword indicates that something
can be referenced from outside object

m can be seen/used by client programmer

= private keyword indicates that something
cannot be referenced from outside object

= cannot be seen/used by client programmer
m Let's fill in public/private for Die class

Public vs. Private Example

Die myDie = new Die();

myDie. //not allowed!

Unified Modeling Language

Unified Modeling Language (UML) provides us with
mechanism for modeling design of software

= critical to separate design from implementation (code)
= benefits of good software design
= easy to understand, easy to maintain, easy to implement
What if skip design phase and start implementing (coding)?
s code difficult to understand, thus difficult to debug

We’'ll use UML class diagrams represent design of our
classes

Once the design is completed, could be implemented in
many different programming languages

= Java, C++, Python,...

UML for Die

= UML diagram representing Die class design

Encapsulation Diagram

= lllustrate principle of encapsulation for Die
A Die object

4 N

client i
programmer

Implementing Die

public class Die

{

Implementing RollDice

public class RollDice
{

public static void main (String [] args)

{

