Recap: Me

- clarifications/corrections/new in green boxes!
- Tamara Munzner
tmm@cs.ubc.ca
http://www.cs.ubc.ca/~tmm

ICICS X661
office hours: Wed 11-12, or by appointment

http://www.ugrad.cs.ubc.ca/~cs111/
http://www.webct.ubc.ca/

http://www.cs.ubc.ca/~tmm/courses/cpsc111-06-spr

Recap: Prereqs

- Prerequisites: Mathematics 12
 - or any other UBC mathematics course

- else you will be dropped from this course
 - see CS advisors if you need prerequisite waived for equivalent work.

Recap: Book

- Big Java (second edition) by Cay Horstmann
 - same book used for CPSC 211

- if you want to use old edition
 - your responsibility to map from old to new
 - material on Java 1.5 missing

- read material before class
- weekly question: turn in Thursdays, start of class

Recap: Intro

- what’s computer science
- what’s an algorithm
- what’s happening with hardware
Objectives
- understand difference between languages types
 - machine vs. assembly vs. high level
- understand difference between languages translation approaches
 - compilers vs. interpreters

Translation Approaches
- Compilers vs. Interpreters

Understanding the Difference Between Languages
- Compilers vs. Interpreters
- understand how Java programs are compiled and executed
- understand the difference between syntax and semantics
- understand the difference between syntax errors and logic errors

Reading This Week
- Ch 1.1 - 1.2: Computer Anatomy from last time
- Ch 1.3 – 1.8: Programming Languages
- Ch 2.1-2.2, 2.5: Types/Variables, Assignment, Numbers
- Ch 4.1-4.2: Numbers, Constants

Difficult to write programs this way
- People created languages that were more readable

First programming languages: machine languages
- most primitive kind

Sample machine language instruction
00000000001000100011000000100000
add what's in this register to what's in this register and put it in this register

What do you suppose it means?

Difficult to write programs this way
- People created languages that were more readable

First programming languages: machine languages
- most primitive kind

Sample machine language instruction
00000000001000100011000000100000
add what's in this register to what's in this register and put it in this register

What do you suppose it means?
Programs and Programming Languages

- Next: assembly languages
 - Direct mappings of machine language instructions into helpful mnemonics, abbreviations
 - Sample assembly language instruction
 - Corresponds to machine language instruction
      ```assembly
      add r1, r2, r6
      ```
      ```machine
      00000000001000100011000000100000
      ```
 - What's in this register?
 - What's in this register?
 - Output of this instruction

Programs and Programming Languages

- Assembly language program converted into corresponding machine language instructions by another program called an assembler

Programs and Programming Languages

- Both machine and assembly languages pose big challenges for programmers
 - Difficult to read and write
 - Difficult to remember
 - Each instruction does very little
 - Takes lots of instructions just to get something simple done
 - Every machine or assembly language good for only one type of computer
 - Different to program IBM than Honeywell than Burroughs...

Programs and Programming Languages

- Example of a high-level instruction
 - \(A = B + C \)
 - Tells computer to
 - Go to main memory and find value stored in location called \(B \)
 - Go to main memory and find value stored in location called \(C \)
 - Add those two values together
 - Store result in memory in location called \(A \)
Your High-Level Language Is Java

- Java developed by Sun Microsystems in early 90s
- Intended as computer-independent (or “platform independent”) programming language for set-top boxes in cable TV networks
- But Sun decided not to go into set-top box business
- World Wide Web became the next big thing
 - Sun saw opportunity, already being heavily into networked computer systems

"Hmmm...
- we have a language that’s been designed to be used on different computer platforms in big networks
- the World Wide Web is a big network of lots of different computer platforms
- let’s make Java the programming language of the Internet!"

And for some good reasons that we can talk about later, that’s exactly what happened

Sample Java Application Program

```
public class Oreo {
    public static void main (String[] args) {
        System.out.println("Feed me more Oreos!");
    }
}
```

Comments ignored by Java compiler

```
public class Oreo {
    public static void main (String[] args) {
        System.out.println("Feed me more Oreos!");
    }
}
```

Comments could also look like this

```
/**
 * Oreo.java        Author:  Kurt Eiselt
 * Demonstrating simple Java programming concepts while revealing one of Kurt’s many weaknesses
 */
public class Oreo {
    public static void main (String[] args) {
        System.out.println("Feed me more Oreos!");
    }
}
```

Comments are important to people
- But not to the compiler
- Compiler only cares about
Whole thing is the definition of a **class**
- Package of instructions that specify
 - what kinds of data will be operated on
 - what kinds of operations there will be
- Java programs will have one or more classes
 - For now, just worry about one class at a time

Instructions inside class definition grouped into one or more procedures called **methods**
- group of Java statements (instructions) that has name, performs some task
- All Java programs you create will have **main** method where program execution begins

These class and method definitions are incomplete at best
- good enough for now
- expand on these definitions as class continues

Words we use when writing programs are called **identifiers**
- except those inside the quotes

Kurt made up identifier **Oreo**

Other programmers chose identifier **System.out.println**
- they wrote printing program
- part of huge library of useful programs that comes with Java
Special identifiers in Java called reserved words
don’t use them in other ways

```java
public class Oreo {
    public static void main (String[] args) {
        System.out.println("Feed me more Oreos!");
    }
}
```

Reserved Words
- Get familiar with these
- But you don’t need to memorize all 52 for exam

```
abstract    do          if          private     throw
boolean  double implements protected throws
break     else    import  public     transient
byte enum     int instanceof return   true
case extends     int short   try
catch false     interface static void
char final     long     strictfp volatile
class finally native super while
const float     new switch
continue for     null     synchronized
default goto     package this
```

Identifiers
- Identifier must
 - Start with a letter and be followed by
 - Zero or more letters and/or digits
 - Digits are 0 through 9.
 - Letters are the 26 characters in English alphabet
 - both uppercase and lowercase
 - plus the $ and _
 - also alphabetic characters from other languages

- Which of the following are not valid identifiers?

```
userName user_name $cash 2ndName
first name user.age _note_ note2
```

Identifiers
- Java is case sensitive
- Oreo oreo OREO oreo
- are all different identifiers, so be careful
- common source of errors in programming
Identifiers

- Java is case sensitive
- Oreo oreo OREO Oreo are all different identifiers, so be careful
- common source of errors in programming
- are these all valid identifiers?

Identifiers

- Creating identifiers in your Java programs
- Remember other people read what you create
- Make identifiers meaningful and descriptive for both you and them
- No limit to how many characters you can put in your identifiers
- but don’t get carried away

```
public class ReallyLongNamesWillDriveYouCrazyIfYouGoOverboard
{
    public static void main (String[] args)
    {
        System.out.println("Enough already!");
    }
}
```

White Space

```
//******************************************************
// Oreo.java        Author:  Kurt Eiselt
// // Demonstrating good use of white space
//******************************************************
public class Oreo
{
    public static void main (String[] args)
    {
        System.out.println("Feed me more Oreos!");
    }
}
```

```
//******************************************************
// Oreo1.java       Author:  Kurt Eiselt
// // Demonstrating mediocre use of white space
//******************************************************
public class Oreo1
{
    public static void main (String[] args)
    {
        System.out.println("Feed me more Oreos!");
    }
}
```

```
//******************************************************
// Oreo2.java       Author:  Kurt Eiselt
// // Demonstrating bad use of white space
//******************************************************
public class Oreo2 { public static void main (String[]
    args) { System.out.println("Feed me more Oreos!"); } }
```

```
//******************************************************
// Oreo3.java        Author:  Kurt Eiselt
// // Demonstrating totally bizarre use of white space
//******************************************************
public class Oreo3
{
    public static void main (String[] args)
    {
        System.out.println("Feed me more Oreos!");
    }
}
```
// Oreo4.java Author: Kurt Eiselt
// // Demonstrating deep psychological issues with whitespace
RIENDL: public class Oreo4
 {
 public static void main
 (String[] args)
 {
 System.out.println
 ("Feed me more Oreos!");
 }
 }

White Space

White space
- Blanks between identifiers and other symbols
- Tabs and newline characters are included
- White space does not affect how program runs
- Use white space to format programs we create so they’re easier for people to understand

Program Development

- Use an editor to create your Java program
 - often called source code
 - code used interchangeably with program or instructions in the computer world
- Another program, a compiler or an interpreter, translates source code into target language or object code, which is often machine language
- Finally, your computer can execute object code

Compiling and Running

- Let’s try it!
 - command line for now
 - later we’ll use Eclipse
 - integrated development environment (IDE)

Syntax

- Rules to dictate how statements are constructed.
 - Example: open bracket needs matching close bracket
 - If program is not syntactically correct, cannot be translated by compiler
 - Different than humans dealing with natural languages like English. Consider statement with incorrect syntax (grammar)
 for weeks. rained in Vancouver it hasn’t
 - we still have pretty good shot at figuring out meaning

Semantics

- What will happen when statement is executed
- Programming languages have well-defined semantics, no ambiguity
- Different than natural languages like English. Consider statement:
 Mary counted on her computer.
 How could we interpret this?
- Programming languages cannot allow for such ambiguities or computer would not know which interpretation to execute
Errors
- Computers follow our instructions exactly
- If program produces the wrong result it’s the programmer’s fault
 - unless the user inputs incorrect data
 - then cannot expect program to output correct results: “Garbage in, garbage out” (GIGO)
- Debugging: process of finding and correcting errors
 - Unfortunately can be very time consuming!

Errors
- Error at compile time (during translation)
 - you did not follow syntax rules that say how Java elements must be combined to form valid Java statements

Errors
- Error at run time (during execution)
 - Source code compiles
 - Syntactically (structurally) correct
 - But program tried something computers cannot do like divide a number by zero.
 - Typically program will crash: halt prematurely

Errors
- Logical error
 - Source code compiles
 - Object code runs
 - But program may still produce incorrect results because logic of your program is incorrect
 - Typically hardest problems to find

Errors
- Let’s try it!
 - Usually errors happen by mistake, not on purpose...

Memory and Identifiers
- Example of a high-level instruction
 - \(A = B + C \)
 - Tells computer to
 - go to main memory and find value stored in location called \(B \)
 - go to main memory and find value stored in location called \(C \)
 - add those two values together
 - store result in memory in location called \(A \)

- Great! But… in reality, locations in memory are not actually called things like \(a, b, \) and \(c \).
Data values are stored in memory locations – more than one location may be used if the data is large.

Address

For total accuracy, these addresses should be binary numbers, but you get the idea, no?

Memory Recap

- Memory: series of locations, each having a unique address, used to store programs and data
- When data is stored in a memory location, previously stored data is overwritten and destroyed
- Each memory location stores one byte (8 bits) of data

Memory and Identifiers

- So what’s with the a, b, and c?
 - Machine language uses actual addresses for memory locations
 - High-level languages easier
 - Avoid having to remember actual addresses
 - Invent meaningful identifiers giving names to memory locations where important information is stored
 - `pay_rate` and `hours_worked` vs. 5802 and 5806
 - Easier to remember and a whole lot less confusing!

Memory Recap Diagram

```
5802
5803
5804
5805
5806
5807
```

```
Data values are stored in memory locations – more than one location may be used if the data is large.
```

Memory and Identifiers

- For total accuracy, these addresses should be binary numbers, but you get the idea, no?

Memory Recap

```
10110101
```

```
Address
```

```
For total accuracy, these addresses should be binary numbers, but you get the idea, no?
```

Memory Recap Diagram

```
5802
5803
5804
5805
5806
5807
```

```
Data values are stored in memory locations – more than one location may be used if the data is large.
```

Memory and Identifiers

- So what’s with the a, b, and c?
 - Machine language uses actual addresses for memory locations
 - High-level languages easier
 - Avoid having to remember actual addresses
 - Invent meaningful identifiers giving names to memory locations where important information is stored
 - `pay_rate` and `hours_worked` vs. 5802 and 5806
 - Easier to remember and a whole lot less confusing!

Memory and Identifiers: Variables

- Variable: name for location in memory where data is stored
 - like variables in algebra class
- `pay_rate`, `hours_worked`, a, b, and c are all variables
- Variable names begin with lower case letters
 - Java convention, not compiler/syntax requirement
- Variable may be name of single byte in memory or may refer to a group of contiguous bytes
 - More about that next time

Programming With Variables

```java
//*****************************************
// Test.java       Author: Kurt
//
// Our first use of variables!
//*****************************************
public class Test
{
    public static void main (String[] args)
    {
        a = b + c;
        System.out.println ("The answer is " + a);
    }
}
```

```
Let's give it a try...
```

```
programming with variables: take 2
```

```java
//*****************************************
// Test2.java       Author: Kurt
//
// Our second use of variables!
//*****************************************
public class Test2
{
    public static void main (String[] args)
    {
        b = 3;
        c = 5;
        a = b + c;
        System.out.println ("The answer is " + a);
    }
}
```

```
programming with variables: take 2
```

```
Let's give it a try...
```

```
* b and c cannot be found!
* need to assign values
```

```
programming with variables: take 2
```
Now What?

Java doesn’t know how to interpret the contents of the memory location:
- are they integers?
- characters from the keyboard?
- shades of gray? or....

Data Types
- Java requires that we tell it what kind of data it is working with.
- For every variable, we have to declare a data type.
- Java language provides eight primitive data types:
 - i.e. simple, fundamental
- For more complicated things, can use data types:
 - created by others provided to us through the Java libraries
 - that we invent.
- We want \(a \), \(b \), and \(c \) to be integers. Here’s how we do it...

Primitive Data Types: Numbers

<table>
<thead>
<tr>
<th>Type</th>
<th>Size</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>byte</td>
<td>1 byte</td>
<td>-128</td>
<td>127</td>
</tr>
<tr>
<td>short</td>
<td>2 bytes</td>
<td>-32,768</td>
<td>32,767</td>
</tr>
<tr>
<td>int</td>
<td>4 bytes</td>
<td>-2,147,483,648</td>
<td>2,147,483,647</td>
</tr>
<tr>
<td>long</td>
<td>8 bytes</td>
<td>9,223,372,036,854,775,807</td>
<td>9,223,372,036,854,775,808</td>
</tr>
<tr>
<td>float</td>
<td>4 bytes</td>
<td>approx 3.4E38 (7 sig. digits)</td>
<td>approx 3.4E38 (7 sig. digits)</td>
</tr>
<tr>
<td>double</td>
<td>8 bytes</td>
<td>approx 1.7E308 (15 sig. digits)</td>
<td>approx 1.7E308 (15 sig. digits)</td>
</tr>
</tbody>
</table>

- Six primitives for numbers
 - integer vs. floating point
 - fixed size, so finite capacity

Primitive Data Types: Non-numeric
- Character Type
 - named char
 - Java uses the Unicode character set so each char occupies 2 bytes of memory.
- Boolean Type
 - named boolean
 - Variables of type boolean have only two valid values:
 - true and false
 - Often represents whether particular condition is true.
 - More generally represents any data that has two states:
 - yes/no, on/off
Primitive Data Types: Numbers

<table>
<thead>
<tr>
<th>Type</th>
<th>Size</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>byte</td>
<td>1 byte</td>
<td>-128</td>
<td>127</td>
</tr>
<tr>
<td>short</td>
<td>2 bytes</td>
<td>-32,768</td>
<td>32,767</td>
</tr>
<tr>
<td>int</td>
<td>4 bytes</td>
<td>-2,147,483,648</td>
<td>2,147,483,647</td>
</tr>
<tr>
<td>long</td>
<td>8 bytes</td>
<td>9,223,372,036,854,775,808</td>
<td>9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>float</td>
<td>4 bytes</td>
<td>approx 3.4E38 (7 sig.digits)</td>
<td>approx 3.4E38 (7 sig.digits)</td>
</tr>
<tr>
<td>double</td>
<td>8 bytes</td>
<td>approx -1.7E308 (15 sig. digits)</td>
<td>approx 1.7E308 (15 sig. digits)</td>
</tr>
</tbody>
</table>

- Primary primitives are **int** and **double**
- Just worry about those for now