
1

University of British Columbia

CPSC 111, Intro to Computation

Jan-Apr 2006

Tamara Munzner

Arrays and Class Design

Lecture 18, Tue Mar 14 2006

http://www.cs.ubc.ca/~tmm/courses/cpsc111-06-spr

based on slides by Kurt Eiselt

2

News

! Midterm 2: Thu Mar 16, 6:30pm

! Woodward 1&2

! hour-long exam, reserve 6:30-8 time slot

! for buffer in case of fire alarms etc

! Assignment 2 was due Friday 5pm

! Internet crash at 4:45pm led to 24-hr extension to

5pm Sat

! hardcopy was due Mon noon

! no labs/tutorials this week

! but one TA will be in lab during normal lab hours to

answer questions

3

Midterm 2

! coverage: through arrays (Chap 8)

! includes/builds on material covered in

previous midterm

! reading

! Chap 1, 2, 3, 4, 6, 7 (not 5)

! Chap 8.1, 8.5-8.7

! study tips

! write and test programs, not just read book

! try programming exercises from book!

4

Reading

! This week: 9.3-9.4, 9.6-9.8

5

! now that we know 2D, we can do nD!

! any number of dimensions: 3D, 4D…

! up to 255D, actually

! example: student quiz scores over multiple

terms

! row: students

! col: quiz scores

! stack: term

Recap/Correct: Multidimensional Arrays

95 82 13 96

51 68 63 57

73 71 84 78

50 50 50 50

99 70 32 12

04-05 Term1

04-05 Term2

05-06 Term1

05-06 Term2

6

 Let's assume that your computer could make 1 billion (1,000,000,000)

comparisons per second. That's a lot of comparisons in a second. And

let's say your computer was using selection sort to sort the names of the

people in the following hypothetical telephone books. Here's some

mathematical food for thought.

phone book number of N2 number of

 people (N) seconds needed

 to sort

Vancouver 544,320 296,284,262,400 296 or 5 minutes

Canada 30,000,000 900,000,000,000,000 900,000 or 10.4 days

People's Republic 1,000,000,000 1,000,000,000,000,000,000 1,000,000,000 or 31.7 years

of China

World 6,000,000,000 36,000,000,000,000,000,000 36,000,000,000 or 1142 years

Recap: Sorting in N^2 Time

7

Question 4: [15 marks]

Now let’s use Java to simulate bunnies! (Why? Because everybody likes bunnies!) In our

simulation, each bunny is on a grid at some location defined by an X-coordinate and a

Y-coordinate. Also, each bunny has some number of energy units measured in carrot sticks.

(X-coordinates, Y-coordinates, and the number of carrot sticks are integer values.) Bunnies

can hop north, south, east, or west. When a bunny hops to the north, the bunny’s Y-coordinate

is increased by 1, and the X-coordinate remains unchanged. When a bunny hops to the west,

the bunny’s X-coordinate is decreased by 1, and the Y-coordinate remains unchanged. Same idea

for hops east (X-coordinate increased by 1, Y-coordinate unchnged) and south (Y-coordinate

decreased by 1, X-coordinate unchanged. Note that making one hop requires a bunny to eat one

carrot stick, and when a bunny has eaten all of his or her carrot sticks, that bunny can 't hop.

Use Java to create a Bunny class which can be used to generate Bunny objects that behave as

described above. When a new Bunny object is created, the Bunny always starts at coordinates

X = 10, Y = 10, and the Bunny has 5 carrot sticks. Your Bunny class definition must include

a hop(int direction) method, and a displayInfo() method. The direction parameter is 12 for north,

3 for east, 6 for south, and 9 for west (like a clock face). The hop() method should test to make sure

that the Bunny has not eaten all the carrot sticks – if the Bunny still has carrot sticks, the hop()

method should update coordinates as explained above and print the message “hop”. If no carrot

sticks remain, it should just print the message “This bunny can’t hop”.

The displayInfo() method should print the Bunny’s location and number of remaining carrot

sticks. Below is a simple test program that could be used to test your Bunny class definition,

followed by the output we’d expect to see when using this test program with your Bunny

class definition.

Bunny Class Warmup

8

public class BunnyTest

{

 public static void main(String[] args)

 {

 System.out.println("Testing Peter");

 Bunny peter = new Bunny();

 peter.displayInfo();

 peter.hop(12);

 peter.hop(12);

 peter.hop(9);

 peter.displayInfo();

 System.out.println("Testing Emily");

 Bunny emily = new Bunny();

 emily.displayInfo();

 emily.hop(9);

 emily.hop(9);

 emily.hop(9);

 emily.hop(12);

 emily.hop(9);

 emily.hop12();

 emily.displayInfo();

 }

}

> java BunnyTest

Testing Peter

This bunny is at position 10,10

This bunny has 5 carrot sticks remaining

hop

hop

hop

This bunny is at position 9,12

This bunny has 2 carrot sticks remaining

Testing Emily

This bunny is at position 10,10

This bunny has 5 carrot sticks remaining

hop

hop

hop

hop

hop

This bunny can't hop

This bunny is at position 6,11

This bunny has 0 carrot sticks remaining

>

9

More Bunnies

How could we keep track of a herd of bunnies?

We could make an array of bunnies.

10

More Bunnies
public class BunnyTest1

{

 public static void main (String[] args)

 {

 Bunny[] myBunnyHerd = new Bunny[10];

 myBunnyHerd[0] = new Bunny(3,6,4,"Foofoo");

 myBunnyHerd[1] = new Bunny(7,4,2,"Peter");

 myBunnyHerd[3] = new Bunny(9,2,3,"Ed");

 for(int i = 0; i < myBunnyHerd.length; i++)

 {

 if (myBunnyHerd[i] != null)

 {

 myBunnyHerd[i].hop(3);

 System.out.println(myBunnyHerd[i]);

 }

 }

 }

}

11

Even More Bunnies
Question 5: [16 marks]

The world desperately needs better bunny management software, so please help by

writing a BunnyHerd class. A BunnyHerd object holds an array of Bunny objects. Your

BunnyHerd class definition should include the following four methods:

constructor Expects two parameters, an integer representing the maximum number of

bunnies in the herd, and a String for the name of the herd.

addBunny(int xPos, int yPos, int carrots,String name) Expects four

parameters, the X- and Y-coordinates of the bunny, the number of carrots, and the

name. This method creates a new Bunny object and stores the reference to the object

in the next available location in the BunnyHerd object.

deleteBunny(String name) Expects one parameter, the name of the bunny. This

method removes from the BunnyHerd object all references to bunnies with the given

name by overwriting those references with the null pointer. This method does not

change the pointer to the next available location in the BunnyHerd object.

printHerd() This method uses the toString() method of the Bunny object to print

information about every Bunny in the herd.

12

Favorite Colors (If Time…)

! record everybody's favorite color

! how can we do "averages" per row?

