
1

University of British Columbia

CPSC 111, Intro to Computation

Jan-Apr 2006

Tamara Munzner

Yet More Array Practice

Lecture 17, Thu Mar 9 2006

http://www.cs.ubc.ca/~tmm/courses/cpsc111-06-spr

based on slides by Kurt Eiselt

2

News

! Midterm 2: Thu Mar 16, 6:30pm

! Woodward 1&2

! hour-long exam, reserve 6:30-8 time slot

! for buffer in case of fire alarms etc

! Assignment 2 due Friday 5pm

! hardcopy to box in basement by 008

! softcopy using handin

3

Midterm 2

! coverage: through arrays (Chap 8)

! includes/builds on material covered in

previous midterm

! reading

! Chap 1, 2, 3, 4, 6, 7 (not 5)

! Chap 8.1, 8.5-8.7

! study tips

! write and test programs, not just read book

! try programming exercises from book!

4

Reading

! This week: no new reading

! Next week: 9.3-9.4, 9.6-9.8

5

Recap: Arrays of Arrays = 2D Arrays

! 2D array often easier to think about

! Internally, 2D arrays implemented as arrays of arrays in Java

! they’re equivalent

0

1

2

3

 0 1 2

0 0 0

0 1 2

0 2 4

0 3 6

rows

columns

0

1

2

3

0 0

1 0

2 0

0 0

1 1

2 2

0 0

1 2

2 4

0 0

1 3

2 6

array of arrays 2D array

6

Recap: 2D Array Access Patterns

! Print average score for each student

! for each row of scores

! add up scores

! divide by number of quizzes

! length of row

0

1

2

3

4

95 82 13 96

51 68 63 57

73 71 84 78

50 50 50 50

99 70 32 12

 scores

 0 1 2 3

 rows: students

cols: quizzes

for (int row = 0; row < scores.length; row++) {

 double average = 0;

 for (int col = 0; col < scores[row].length; col++) {

 average = average + scores[row][col];

 }

 average = average / scores[row].length;

}

for (int col = 0; col < scores[0].length; col++) {

 double average = 0;

 for (int row = 0; row < scores.length; row++) {

 average = average + scores[row][col];

 }

 average = average / scores.length;

}

! Print average score for each quiz

! for each column of scores

! add up scores

! divide by number of students

! length of column

7

Recap: Per-Student Averages

public class ArrayEx4

{

 public static void main(String[] args)

 {

 double[][] scores = {{95, 82, 13, 96},

 {51, 68, 63, 57}, {73, 71, 84, 78}, {50, 50, 50, 50},

 {99, 70, 32, 12}};

 double average;

 // here's where we control looping row by row (student by student)

 for (int row = 0; row < scores.length; row++)

 {

 average = 0;

 // and here's where we control looping through the columns

 // (i.e., quiz scores) within each row

 for (int col = 0; col < scores[row].length; col++)

 {

 average = average + scores[row][col];

 }

 average = average / scores[row].length;

 System.out.println("average of row " + row + " is " + average);

 }

 }

}

8

Recap: Selection Sort

 3

 8

19

16

12

 0

 1

 2

 3

 4

The smallest value

so far is 12

Its index is 4

! Start at beginning

! Consider unsorted array elements: beyond

current spot

! Find smallest element

! Swap with current spot

! Move down by one

9

! now that we know 2D, we can do nD!

! any number of dimensions: 3D, 4D…

! up to 127D, actually

! example: student quiz scores over multiple

terms

! row: students

! col: quiz scores

! stack: term

Multidimensional Arrays

95 82 13 96

51 68 63 57

73 71 84 78

50 50 50 50

99 70 32 12

04-05 Term1

04-05 Term2

05-06 Term1

05-06 Term2

10

Now for the good stuff

 Computer science folks don't spend all their time writing programs.

They're also concerned with the efficiency of those programs and their

underlying algorithms. Efficiency can be expressed in terms of either

time or memory needed to complete the task. In the case of sorting

algorithms, we're typically interested in how much time it takes to sort.

So let's try to get some sense of the time requirements of selection sort.

We don't use a stopwatch...instead, we use mathematics. The

fundamental operation in sorting is the comparison to see if one value is

less than the other, and the time required to sort corresponds to the

number of comparisons that must be made to complete the sorting.

11

Estimating time required to sort

16

 3

19

 8

12

 0

 1

 2

 3

 4

We can go back to the selection sort example and count

the comparisons. The first pass through the array of 5

elements started with 16 being compared to 3, then 3

was compared to 19, 8, and 12. There were 4

comparisons. The value 3 was moved into the location

at index 0.

12

Estimating time required to sort

 3

16

19

 8

12

 0

 1

 2

 3

 4

We can go back to the selection sort example and count

the comparisons. The first pass through the array of 5

elements started with 16 being compared to 3, then 3

was compared to 19, 8, and 12. There were 4

comparisons. The value 3 was moved into the location

at index 0. Then the second pass through the array

began, starting with index 1. 16 was compared to 19,

then 16 was compared to 8, which became the new

minimum and was compared to 12. So among 4

elements in the array, there were 3 comparisons.

13

Estimating time required to sort

 3

 8

12

16

19

 0

 1

 2

 3

 4

It takes 4 passes through the array to get it completely

sorted. There are 4 comparisons on the first pass, 3

comparisons on the second pass, 2 comparisons on the

third pass, and 1 comparison on the last pass. That is, it

takes 4 + 3 + 2 + 1 = 10 comparisons to sort an array of

five values.

If you do this same computation on an array with six

values, you'll find it takes 5 + 4 + 3 + 2 + 1 = 15

comparisons to sort the array. Do you see a pattern?

With a little math, you can figure out that the number of

comparisons required to perform selection sort on an

array of N values is given by the expression: N*(N-1)/2

or (N2-N)/2

14

Estimating time required to sort

 Either way, it should be easy to see that as N, the number of values in the

array gets very big, the number of comparisons needed to sort the array

grows in proportion to N2, with the other terms becoming insignificant by

comparison.

So sorting an array of 1,000 values would require approximately

1,000,000 comparisons. Similarly, sorting an array of 1,000,000 values

would take approximately 1,000,000,000,000 comparisons.

As the number of values to be sorted grows, the number of comparisons

required to sort them grows much faster. Fortunately, there are other

sorting algorithms that are much less time-consuming, but we won't be

talking about them in this class. In the meantime, here are some real

numbers to help you think about just how long it might take to sort some

really big arrays...

15

Estimating time required to sort

 Let's assume that your computer could make 1 billion (1,000,000,000)

comparisons per second. That's a lot of comparisons in a second. And

let's say your computer was using selection sort to sort the names of the

people in the following hypothetical telephone books. Here's some

mathematical food for thought.

phone book number of N2 number of

 people (N) seconds needed

 to sort

16

Estimating time required to sort

 Let's assume that your computer could make 1 billion (1,000,000,000)

comparisons per second. That's a lot of comparisons in a second. And

let's say your computer was using selection sort to sort the names of the

people in the following hypothetical telephone books. Here's some

mathematical food for thought.

phone book number of N2 number of

 people (N) seconds needed

 to sort

Vancouver 544,320 296,284,262,400 296 or 5 minutes

17

Estimating time required to sort

 Let's assume that your computer could make 1 billion (1,000,000,000)

comparisons per second. That's a lot of comparisons in a second. And

let's say your computer was using selection sort to sort the names of the

people in the following hypothetical telephone books. Here's some

mathematical food for thought.

phone book number of N2 number of

 people (N) seconds needed

 to sort

Vancouver 544,320 296,284,262,400 296 or 5 minutes

Canada 30,000,000 900,000,000,000,000 900,000 or 10.4 days

18

Estimating time required to sort

 Let's assume that your computer could make 1 billion (1,000,000,000)

comparisons per second. That's a lot of comparisons in a second. And

let's say your computer was using selection sort to sort the names of the

people in the following hypothetical telephone books. Here's some

mathematical food for thought.

phone book number of N2 number of

 people (N) seconds needed

 to sort

Vancouver 544,320 296,284,262,400 296 or 5 minutes

Canada 30,000,000 900,000,000,000,000 900,000 or 10.4 days

People's Republic 1,000,000,000 1,000,000,000,000,000,000 1,000,000,000 or 31.7 years

of China

19

Estimating time required to sort

 Let's assume that your computer could make 1 billion (1,000,000,000)

comparisons per second. That's a lot of comparisons in a second. And

let's say your computer was using selection sort to sort the names of the

people in the following hypothetical telephone books. Here's some

mathematical food for thought.

phone book number of N2 number of

 people (N) seconds needed

 to sort

Vancouver 544,320 296,284,262,400 296 or 5 minutes

Canada 30,000,000 900,000,000,000,000 900,000 or 10.4 days

People's Republic 1,000,000,000 1,000,000,000,000,000,000 1,000,000,000 or 31.7 years

of China

World 6,000,000,000 36,000,000,000,000,000,000 36,000,000,000 or 1142 years

20

Favorite Colors

! record everybody's favorite color

! how can we do "averages" per row?

