Information VisualizationManipulate Interactive, Facet intoMultiple, ScalableInsetsEx: Complexity Families
Tamara MunznerDepartment of Computer ScienceUniversity of British ColumbiaWeek 9, 2 Nov 2022
https://www.cs.ubc.ca/~tmm/courses/547-22

Plan for today

- small group exercises
- Complexity Families
- backlog reading Q\&A
-W6,W7
- this week reading Q\&A
- chap: Manipulate Interactive, Multiple Views. paper: ScalableInsets
- reminder: post-class office hours
- if you want discussion of your project proposal feedback
- especially if I told you to talk with me!
- all of you should have gotten written comments by email

Upcoming

- next week (WIO): reading week. no class, no readings, no async discussion -work on projects!
- week after (WII)
- light async reading/discussion
- I reading: Ch I3, Reduce
- due Tue 3pm: project updates
-in class: project peer reviews
- each team will be matched with one other, will post on Piazza before Tue 3pm
- read other team's written update before class
- first A critiques B; then B critiques A
- record discussion/thoughts in gdoc
-in class: mini-lecture \& Q/A catchup

Upcoming

- week after that (WI2)
- async: last week of readings / discussion
- Ch I4: Embed - Focus+Context
- paper: Visualizing Dataflow Graphs of Deep Learning Models in TensorFlow.

Kanit Wongsuphasawat, Daniel Smilkov, James Wexler, Jimbo Wilson, Dandelion Mané, Doug Fritz, Dilip Krishnan, Fernanda B.Viégas, and Martin Wattenberg.
IEEE TVCG (Proc.VAST 2017) 24(I):I-I2, 2018.
[type: design study]

- in class: post-update meetings with Tamara
- oral feedback on project progress, after l've read them
- last week of classes (WI3)
- async: no readings/discussion
-in class: lecture on research process and final writeup expectations
- final presentations (WI5)

Q\&A / Backup Slides

Visualization Analysis \& Design

Interactive Views (Ch 11/l2)

Tamara Munzner

Department of Computer Science University of British Columbia @tamaramunzner

How to handle complexity: I previous strategy
\rightarrow Derive

- derive new data to show within view

How to handle complexity: I previous strategy + 2 more
\rightarrow Derive

Manipulate
Θ Change

Θ Select

Θ Navigate

Facet
Θ Juxtapose

Θ Partition

Θ Superimpose

Manipulate View

Manipulate

Θ Change over Time

Change over time

- change any of the other choices
- encoding itself
- parameters
- arrange: rearrange, reorder
-aggregation level, what is filtered...
-interaction entails change
- powerful \& flexible

Idiom: Re-encode

Idiom: Change parameters

- widgets and controls
-sliders, buttons, radio buttons, checkboxes, dropdowns/comboboxes
- pros
- clear affordances, self-documenting (with labels)
- cons
- uses screen space
- design choices
- separated vs interleaved
- controls \& canvas

[Growth of a Nation](http://laurenwood.github.io/) made with D3

Idiom: Change order/arrangement

- what: simple table
- how: data-driven reordering
- why: find extreme values, trends

[Sortable Bar Chart] https://observablehq.com/@d3/sortable-bar-chart
made with D3

Idiom: Reorder

System:DataStripes

- what: table with many attributes
- how: data-driven reordering by selecting column
- why: find correlations between attributes

[http://carlmanaster.github.io/datastripes/]
made with D3

Idiom: Change alignment

- stacked bars
- easy to compare
- first segment
- total bar
- align to different segment
- supports flexible comparison
(Proc. InfoVis 20I3) I9:I2 (20I3), 2277-2286.]

Idiom: Animated transitions - visual encoding change

- smooth transition from one state to another
- alternative to jump cuts, supports item tracking
- best case for animation
- staging to reduce cognitive load

Idiom: Animated transition - tree detail

- animated transition
-network drilldown/rollup

Manipulate

Θ Change over Time

Interaction technology

- what do you design for?
-mouse \& keyboard on desktop?
- large screens, hover, multiple clicks
-touch interaction on mobile?
- small screens, no hover, just tap
- gestures from video / sensors?
- ergonomic reality vs movie bombast
- eye tracking?

Data visualization and the news - Gregor Aisch (37 min) vimeo.com/l82590214

I Hate Tom Cruise - Alex Kauffmann (5 min) www.youtube.com/watch?v=QXLfT9sFcbc

Selection

- selection: basic operation for most interaction
- design choices
-how many selection types?
- interaction modalities
- click/tap (heavyweight) vs hover (lightweight but not available on most touchscreens)
- multiple click types (shift-click, option-click, ...)
- proximity beyond click/hover (touching vs nearby vs distant)
- application semantics
- adding to selection set vs replacing selection
- can selection be null?
- ex: toggle so nothing selected if click on background
- primary vs secondary (ex: source/target nodes in network)
- group membership (add/delete items, name group, ...)

Highlighting

- highlight: change visual encoding for selection targets
- visual feedback closely tied to but separable from selection (interaction)
- design choices: typical visual channels
- change item color
- but hides existing color coding
-add outline mark
- change size (ex: increase outline mark linewidth)
- change shape (ex: from solid to dashed line for link mark)
- unusual channels: motion
- motion: usually avoid for single view
- with multiple views, could justify to draw attention to other views

Manipulate

Θ Change over Time

Θ Select

Θ Navigate
\rightarrow Item Reduction
\rightarrow Zoom Geometric or Semantic

\rightarrow Pan/Translate

\rightarrow Constrained

Manipulate

Θ Change over Time

Θ Select

Navigate: Changing viewpoint/visibility

- change viewpoint
- changes which items are visible within view
- camera metaphor
- pan/translate/scroll
- move up/down/sideways

Idiom: Scrollytelling

- how: navigate page by scrolling (panning down)
- pros:
- familiar \& intuitive, from standard web browsing

Scroll To Start Animation

- linear (only up \& down) vs possible overload of click-based interface choices
- cons:
-full-screen mode may lack affordances
- scrolljacking, no direct access
- unexpected behaviour
- continuous control for discrete steps
[How to Scroll, Bostock](https://bost.ocks.org/mike/scroll/) https://eagereyes.org/blog/2016/the-scrollytelling-scourge

Navigate: Changing viewpoint/visibility

- change viewpoint
- changes which items are visible within view
- camera metaphor
- pan/translate/scroll
- move up/down/sideways
-rotate/spin
- typically in 3D
-zoom in/out
\rightarrow Zoom
Geometric

\rightarrow Pan/Translate

- enlarge/shrink world == move camera closer/further
- geometric zoom: standard, like moving physical object

Navigate: Unconstrained vs constrained

- unconstrained navigation
- easy to implement for designer
- hard to control for user
- easy to overshoot/undershoot
- constrained navigation
- typically uses animated transitions
- trajectory automatically computed based on selection
- just click; selection ends up framed nicely in final viewport
Θ Navigate
\rightarrow Item Reduction
\rightarrow Zoom
Geometric or Semantic

\rightarrow Pan/Translate

\rightarrow Constrained

Idiom: Animated transition + constrained navigation

- example: geographic map
- simple zoom, only viewport changes, shapes preserved

Zoom to Bounding Box

[Zoom to Bounding Box] https://observablehq.com/@d3/zoom-to-bounding-box

Navigate: Reducing attributes

- continuation of camera metaphor - slice
- show only items matching specific value for given attribute: slicing plane
- axis aligned, or arbitrary alignment - Cut
- show only items on far slide of plane from camera
- project
- change mathematics of image creation
- orthographic
- perspective
- many others: Mercator, cabinet, ...

Interaction benefits

- interaction pros
-major advantage of computer-based vs paper-based visualization
- flexible, powerful, intuitive
- exploratory data analysis: change as you go during analysis process
- fluid task switching: different visual encodings support different tasks
- animated transitions provide excellent support
- empirical evidence that animated transitions help people stay oriented

Interaction limitations

- interaction has a time cost
- sometimes minor, sometimes significant
- degenerates to human-powered search in worst case
- remembering previous state imposes cognitive load
- controls may take screen real estate
- or invisible functionality may be difficult to discover (lack of affordances)
- users may not interact as planned by designer
-NYTimes logs show $\sim 90 \%$ don't interact beyond scrollytelling - Aisch, 2016

Visualization Analysis \& Design

Interactive Views (Ch l 1/12) II

Tamara Munzner

Department of Computer Science University of British Columbia @tamaramunzner

How to handle complexity: I previous strategy + 2 more
\rightarrow Derive

- derive new data to show within view
- change view over time
- facet across multiple views

Θ Navigate

Facet
Θ Juxtapose

Θ Partition

Θ Superimpose

Multiple Views

Facet
Θ Juxtapose

Partition

Θ Superimpose

Facet
Θ Juxtapose

Partition

Θ Superimpose

Juxtapose and coordinate views

\rightarrow Share Encoding: Same/Different
\rightarrow Linked Highlighting

\rightarrow Share Data: All/Subset/None

\rightarrow Share Navigation

Idiom: Linked highlighting

- see how regions contiguous in one view are distributed within another
- powerful and pervasive interaction idiom
- encoding: different
- multiform
- data: all shared
- all items shared

-different attributes across the views
- aka: brushing and linking

Linked views: Directionality

- unidirectional vs bidirectional linking
-bidirectional almost always better!

http://pbeshai.github.io/linked-highlighting-react-vega-redux/

Idiom: Overview-detail views

System: Google Maps

- encoding: same or different
-ex: same (birds-eye map)
- data: subset shared
-viewpoint differences: subset of data items
- navigation: shared
-bidirectional linking
- other differences
-(window size)

[A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 4I:I (2008), I-3I.]

Idiom: Overview-detail navigation

- encoding: same or different
- data: subset shared
- navigation: shared
- unidirectional linking
- select in small overview, change extent in large detail view

https://observablehq.com/@uwdatalinteraction

Idiom: Tooltips

- popup information for selection
-hover or click
- specific case of detail view:
provide useful additional detail on demand
- beware: does not support overview!
- always consider if there's a way to visually encode directly to provide overview
- "If you make a rollover or tooltip, assume nobody will see it. If it's important, make it explicit."
- Gregor Aisch, NYTimes

Idiom: Small multiples

- encoding: same
-ex: line charts
- data: none shared
- different slices of dataset
- items or attributes

Interactive small multiples

- linked highlighting: analogous item/attribute across views - same year highlighted across all
charts if hover within any chart - same year highlighted across all
charts if hover within any chart

The Rise and Decline of Ask MetaFilter

Catrgurisa like computers A internet have buse ilrupping in use fur a lenge lime, mew likely lue to tompelition lake Slank Overflow.
Other smaller categutiss have had consistent use pallerne until reare rovenuly.
Diseluimer: 2014 is included, even thuagh the ycar is not aver yel.

3,005
8.003

1,003

8
4003
4.003
[https://bl.ocks.org/ColinEberhardt/3c780088c363d/5/5403f50a87a8712I]
[https://blog.scottlogic.com/2017/04/05/interactive-responsive-small-multiples.html]
[http://projects.flowingdata.com/tut/linked small multiples demo/]

Example: Combining many interaction idioms System: Buckets

http://buckets.peterbeshai.com/

Juxtapose views: tradeoffs

- juxtapose costs
- display area
- 2 views side by side: each has only half the area of one view
- juxtapose benefits
- cognitive load: eyes vs memory
- lower cognitive load: move eyes between 2 views
- higher cognitive load: compare single changing view to memory of previous state

Juxtapose vs animate

- animate: hard to follow if many scattered changes or many frames
- vs easy special case: animated transitions

Juxtapose vs animate

- animate: hard to follow if many scattered changes or many frames
- vs easy special case: animated transitions
- juxtapose: easier to compare across small multiples
- different conditions (color), same gene (layout)

View coordination: Design choices

		Data				
		All	Subset	None		
O등O든	Same	Redundant	Overview/ Detail			
	Different	$\\|\\| \quad . . \cdot$ Multiform	$\begin{gathered} \text { Multiform, } \begin{array}{c} \text { Morview/ } \\ \text { Over } \end{array} \text { Detail } \end{gathered}$	No Linkage		

Idiom: Reorderable lists

System: Improvise

- list views
- easy lookup
- useful when linked to other views
- how many views is ok vs too complex?
- open research question

[Building Highly-Coordinated Visualizations In Improvise. Weaver.
Proc. IEEE Symp. Information Visualization (InfoVis), pp. I59-I 66, 2004.]

Facet
Juxtapose

Partition

Superimpose

Partition into views

- how to divide data between views
- split into regions by attributes
- encodes association between items using spatial proximity
Θ Partition into Side-by-Side Views

- order of splits has major implications for what patterns are visible

Partitioning: Grouped vs small-multiple bars

- single bar chart with grouped bars
- split by state into regions
- complex glyph within each region showing all ages
- compare: easy within state, hard across ages

[https://observablehq.com/@d3/grouped-bar-chart]
- small-multiple bar charts
- split by age into regions
- one chart per region
- compare: easy within age, harder across states

[https://bl.ocks.org/mbostock/4679202]

Partitioning: Recursive subdivision

- split by neighborhood
- then by type
- flat, terrace, semi-detached, detached
- then time
- years as rows
- months as columns
- color by price
- neighborhood patterns
- where it's expensive
- where you pay much more for detached type

Partitioning: Recursive subdivision

System: HIVE

- switch order of splits
- type then neighborhood
- switch color
-by price variation
- type patterns
- within specific type, which neighborhoods inconsistent

Partitioning: Recursive subdivision

System: HIVE

- different encoding for second-level regions
- choropleth maps

Facet
Θ Juxtapose

Partition
Superimpose

Superimpose layers

- layer: set of objects spread out over region
- each set is visually distinguishable group
- extent: whole view
- design choices
- how many layers, how to distinguish?
- encode with different, nonoverlapping channels
- two layers achievable, three with careful design
- small static set, or dynamic from many possible?
Θ Superimpose Layers

Static visual layering

- foreground layer: roads
-hue, size distinguishing main from minor -high luminance contrast from background
- background layer: regions
- desaturated colors for water, parks, land areas
- user can selectively focus attention

Idiom: Trellis plots

- superimpose within same frame - color code by year

- partitioning

- split by site, rows are barley varieties
- main-effects ordering
- derive value of median for group
- order rows within view by variety median
- order views themselves by site median

Superimposing limits (static)

- few layers, more lines
- up to a few dozen lines
-but not hundreds
- superimpose vs juxtapose: empirical study
- same size: all multiples, vs single superimposed
- superimposed: local tasks
- juxtaposed: global tasks, esp. for many charts

Dynamic visual layering

- interactive, based on selection
- one-hop neighbour highlighting
click (heavyweight)
hover (fast)

How?

Encode

Θ Map

from categorical and ordered attributes
\rightarrow Color
\rightarrow Hue \rightarrow Saturation \rightarrow Luminance
\rightarrow Size, Angle, Curvature, ...
-■ ■ I/ニ |)))
\rightarrow Shape
$+\square \square \Delta$
\rightarrow Motion Direction, Rate, Frequency, ...

