Research Papers and Process

Tamara Munzner

Department of Computer Science University of British Columbia

CPSC 547, Information Visualization **30 November 2022**

http://www.cs.ubc.ca/~tmm/courses/547-22

Today

- papers & research: pitfalls & process
 - -writing infovis research papers
 - review reading, review writing, conference talks
- course endgame expectations
 - -final presentations
 - -final report
 - incl. course paper vs research paper differences
- [evaluations]
- open science

-making research available, reproducible, replicable

Writing InfoVis Papers

Pitfalls

- writing infovis papers: pitfalls to avoid
 - Process and Pitfalls in Writing Information Visualization Research Papers. Tamara Munzner. In: Information Visualization: Human-Centered Issues and Perspectives. Andreas Kerren, John T. Stasko, Jean-Daniel Fekete, Chris North, eds. Springer LNCS Volume 4950, p 134-153, 2008.

Idiom pitfalls

- Unjustified Visual Encoding
 - should justify why visual encoding design choices appropriate for problem
 - -prerequisite: clear statement of problem and encoding!
- Hammer In Search of Nail
 - should characterize capabilities of new technique if proposed in paper
- Color Cacophony
 - -avoid blatant disregard for basic color perception issues
 - huge areas of highly saturated color
 - categorical color coding for 15+ category levels
 - red/green without luminance differences
 - encoding 3 separate attributes with RGB
- Rainbows Just Like In The Sky
 - -avoid hue for ordered attribs, perceptual nonlinearity along rainbow gradient

Later pitfalls: Strategy

- What I Did Over My Summer Vacation -don't focus on effort rather than contribution -don't be too low level, it's not a manual
- Least Publishable Unit
 - -avoid tiny increment beyond (your own) previous work -bonus points: new name for old technique
- Dense As Plutonium
 - -don't cram in so much content that can't explain why/what/how
 - fails reproducibility test
- Bad Slice and Dice
 - -two papers split up wrong
 - neither is standalone, yet both repeat

Later pitfalls: Tactics

- Stealth Contributions
 - -don't leave them implicit, it's your job to tell reader explicitly!
 - -consider carefully, often different from original project goals

Contributions in research papers

- what are your research contributions?
 - -what can we do that wasn't possible before?
 - -how can we do something better than before?
 - -what do we know that was unknown or unclear before?
- determines everything
 - -from high-level message to which details worth including
- often not obvious

-diverged from original goals, in retrospect

- state them explicitly and clearly in the introduction
 - -don't hope reviewer or reader will fill them in for you
 - -don't leave unsaid should be obvious after close reading of previous work
 - -goal is clarity, not overselling (limitations typically later, in discussion section)

previous work iscussion section)

Later pitfalls: Tactics

- Stealth Contributions
 - -don't leave them implicit, it's your job to tell reader explicitly!
 - -consider carefully, often different from original project goals
- I Am So Unique
 - don't ignore previous work
 - -both on similar problems and with similar solutions
- Enumeration Without Justification
 - -"X did Y" not enough
 - -must say why previous work doesn't solve your problem
 - -what limitations of their does your approach fix?
- I Am Utterly Perfect
 - no you're not; discussion of limitations makes paper stronger!

Later pitfalls: Results

- Unfettered By Time
 - -choose level of detail for performance numbers
 - detailed graphs for technique papers, high-level for design & eval papers
- Straw Man Comparison
 - compare appropriately against state-of-the-art algorithms -head-to-head hardware is best (re-run benchmarks yourself, all on same machine)
- Tiny Toy Datasets
 - compare against state-of-the-art dataset sizes for technique (small ok for eval)
- But My Friends Liked It
 - -asking labmates not convincing if target audience is domain experts
- Unjustified Tasks
 - use ecologically valid user study tasks: convincing abstraction of real-world use

Final pitfalls: Style

- Deadly Detail Dump
 - -explain how only **after** what and why; provide high-level framing before low-level detail
- Story-Free Captions

– optimize for flip-through-pictures skimming

My Picture Speaks For Itself

-explicitly walk them through images with discussion

Grammar Is Optional

-good low-level flow is necessary (but not sufficient), native speaker check good if ESL

- Mistakes Were Made
 - -don't use passive voice, leaves ambiguity about actor
 - your research contribution or done by others?

Final pitfalls: Style 2

- Jargon Attack
 - -avoid where you can, define on first use
 - all acronyms should be defined
- Nonspecific Use Of Large

-quantify! hundreds? IOK? IOOK? millions? billions?...

Final pitfalls: Submission

- Slimy Simultaneous Submission
 - often detected when same reviewer for both
 - instant dual rejection, often multi-conference blacklist
- Resubmit Unchanged
 - respond to previous reviews: often get reviewer overlap, irritated if ignored

Generality

- encoding: visualization specific
- strategy: all research
- tactics: all research
- results: visualization specific
- style: all research, except

-Story-Free Captions, My Picture Speaks For Itself

Research Process & Pitfalls

Review reading pitfalls

- Reviewers Were Idiots
 - rare: insufficient background to judge worth
 - if reviewer didn't get your point, many readers won't
 - -your job: rewrite so clearly that nobody can misunderstand
- Reviewers Were Threatened By My Brilliance
 seldom: unduly harsh since intimately familiar with area
- I Just Know Person X Wrote This Review
 - sometimes true, sometimes false
 - -don't get fixated, try not to take it personally
- It's The Writing Not The Work
 - -sometimes true: bad writing can doom good work (good writing may save borderline)
 - -sometimes false: weak work common! reinvent the wheel worse than previous one

vriting may save borderline) worse than previous one

Review writing pitfalls

- Uncalibrated Dismay
 - -remember you've only read the best of the best!
 - -most new reviewers are overly harsh
- It's Been Done, Full Stop

-you must say who did it in which paper, full citation is best

- You Didn't Cite Me
 - stop and think whether it's appropriate
 - -be calm, not petulant
- You Didn't Channel Me
 - -don't compare against paper you would have written
 - review the paper they submitted

Conference talk pitfalls

- Results As Dessert
 - -don't save until the end as a reward for the stalwart!
 - showcase early to motivate
- A Thousand Words, No Pictures
 - -aggressively replace words with illustrations
 - -most slides should have a picture
- Full Coverage Or Bust
 - cannot fit all details from paper
 - communicate big picture
 - -talk as advertising: convince them it's worth their time to read paper!

Paper writing process suggestions

• pre-paper talk

- -write and give talk first, as if presenting at conference
- -iterate on talk slides to get structure, ordering, arguments right
- -then create paper outline from final draft of slides
 - encourages concise explanations of critical ideas, creation of key diagrams
 - avoids wordsmithing digressions and ratholes
 - easier to cut slides than prose you agonized over
- pre-paper/practice talk feedback session: at least 2-3x talk length -global comments, then slide by slide detailed discussion – nurture culture of internal critique (build your own critique group if necessary)
- have non-authors read paper before submitting
 - -internal review can catch many problems
 - -ideally group feedback session as above

Course Endgame

Logistics

- Assignments: Final Presentations on Canvas
 - -upload due Wed Dec 14 noon (2 hrs before session)
 - required & posted: slides (Project Final Presentation Slides, PDF)
 - optional & posted: video (Project Final Presentation Video, mp4)
- Assignments: Final Report on Canvas
 - -upload due Fri Dec 16 8pm (PST)
 - required & posted: report (Project Final Report, PDF)
 - required & posted: showcase image (Project Teaser Image, png)
 - required but not posted: code incl README (Project Source Code and Other Materials, zip)
 - encouraged & posted: live demo URL (include in code README)
 - encouraged & posted: video (include in code zip *only* if different from final present video)

ode and Other Materials, zip)) nt from final present video)

Final Presentations

Final presentations: Wed Dec 14 2-5:15 pm

- length (14 projects)
 - -presentation (live or prerecorded): 10 min for groups, 8 min for solo
 - -**Q&A** live: 2 min per project
- session structure
 - -order reverse alphabetical by first name, from bottom up on project page
 - -2 breaks, between each set of 5-6 presentations
 - -CS dept (fac / grads) & infovis group invited, friends/others very welcome!
 - refreshments served

Final presentations, cont

- presentation structure
 - content: motivation/framing, project, results, critique/limitation
 - standalone: don't assume audience has read proposal or updates (or remembers your pitch)
 - -slides (& slide numbers) mandatory for main part
 - -demo strongly encouraged, either live or prerecorded
 - -format is up to you: live presentation or prerecorded video or a mix
- slides/video upload
 - -upload to Canvas Assignments: Final Slides (mandatory), Final Video (optional)
 - -by noon Wed Dec 14

note: code freeze after presentations!

- no additional work on project allowed after presentation deadline
- -additional two days to get it all written down coherently for final report

Final Presentations Schedule

- 2:00-2:10 Yaman Sanobar. The Use of Data Visualization in E-Commerce: A **Review.**
- 2:10-2:20 Rosalyn Carr. **Modified VAST Challenge with Applications to Data Breaches.**
- 2:20-2:30 Matias I.B. Oddo. **B-Matrix Network Visualization.**
- 2:30-2:42 Madonna Huang, Michael Yin. **A Visualization Tool for Global Wastewater Treatment** Plants.
- 2:42-2:52 Jianhao Cao. **TableRepoViz: Visualizing Tabular Data Repositories** for Facilitating Descriptive Tag Augmentation.
- 2:52-3:05 BREAK
- 3:05-3:17 Ian Hill, Matthew Tang. **GraceFall: Visualizer for Diverse Stress Test Degradation Data Spanning Multiple Time Scales.**
- 3:17-3:29 Han Wang, Xin Wang. **AsylumLoupe: EU Asylum Demographics and Movement Information Visualization.**

- 3:29-3:41 Haixiang Huang, Jordan Yu, Mingrui Li.
- 3:41-3:53 Chenwei Zhang, Yibo Jiao. of DNA Reactions
- 4:05-4:20 BREAK
- 4:20-4:32 Brett Kiyota, Kieran Mahedan.
- 4:32-4:44 Armaghan Sarvar, Cecilia Yang. **Assessment Visualization.**
- Smith.
 - The Dungeon Master's Dashboard.

CancerMap: Visualizing Cancer Rate with Economy.

i-ViDa: Visualizing Energy Landscapes and Trajectories

• 3:53-4:05 Jingxuan (Carol) Huang, Devyani McLaren, Tommy Nguyen. Grad student life: Cost of Living @UBC.

A comparison of single cell RNA sequencing visualization tools for multimodal timelapse analysis.

CMito-AssemblyVis: Mitochondrial Genome Assembly

• 4:44-4:56 Alex Adrian-Hamazaki, Rodrigo S. Conceição, Yerin Kim. **ChIP-Seq Data Visualization Made Simple.**

• 4:56-5:08 Ahmed Abu Zuraiq, Helena De Castro Alvarenga, Ryan

Final presentations marking

- template (may change)
 - Intro/Framing: 20%
 - Main: 30%
 - Limitations/Critique/Lessons: 10%
 - Slides: 10%
 - Presentation/Video Style: 10%
 - -Demo: 10% (or N/A)
 - Question Handling: 10%

- marking by buckets
 - -great 100%
 - good 89%
 - ok 78%
 - poor 67%
 - zero 0%

Marking: Course overall

- 50% Project, summative assessment at end
 - 15% Final Presentation
 - –25% Final Report
 - -60% Content
 - (Milestones pass/fail, penalty only if missed or unacceptable)
 - pitch 5%, proposal 10%, update 10%

- 36% Async Discussion
 - - (most got full credit)
- - -2% final presentations
 - (most got full credit)

-9 weeks, 4% per week (mostly)

• 75% own comments, 25% responses

I4% Sync: In-Class Participation

- 12 sessions, 1% per session

Final Reports

Final reports

- PDF, use InfoVis templates http://junctionpublishing.org/vgtc/Tasks/camera_tvcg.html -your choice to use Latex/Word/whatever
- no length cap: illustrate freely with screenshots!
 - -design study / technique: aim for at least 6-8 pages
 - -analysis / survey: aim for at least 15-20 pages
- strongly encouraged to re-use text from proposal & update writeups
- encourage looking at my writing correctness and style guidelines -<u>https://www.cs.ubc.ca/~tmm/writing.html</u>
- strongly encourage looking at previous examples
 - -<u>https://www.cs.ubc.ca/~tmm/courses/547-22/projectdesc.html#examp</u>
 - Example Past Projects (curated list)
 - -direct links to all project pages to browse, 2021-2003

Course requirements vs research paper standards

- research novelty not required
- mid-level discussion of implementation is required
 - -part of my judgement is about how much work you did
 - -high level: what toolkits etc did you use
 - medium level: what pre-existing features did you use/adapt
 - -low level **not** required: manual of how to use, data structure details
- design justification is required
 - (unless analysis/survey project)
 - different in flavour between design study projects and technique projects
 - -description of design -- what you did -- is necessary but not sufficient
- publication-level validation not required
 - -user studies, extensive computational benchmarks, utility to target audience

Report structure: General

- low level: necessary but not sufficient
 - correct grammar/spelling
 - -sentence flow
 - ideal: formal technical voice, not conversational style
- medium level: order of explanations
 - -build up ideas
 - ideal: carefully structured, not stream-of-consciousness infodump
- high through low level: why/what before how
 - -paper level
 - motivation: why should I (reader) care
 - overview: what did you (writer) do
 - details: how did you (writer) do it
 - -section level
 - overview then details
 - -sometimes subsection or paragraph level

Sample outlines: Design study

- <u>https://www.cs.ubc.ca/~tmm/courses/547-22/projectdesc.html#outlines</u>
- Abstract
 - -concise summary of your project
 - do not include citations
- Introduction
 - -give big picture, establish scope, some background material might be appropriate
- Related work
 - include both work aimed at similar problems & similar solutions
 - -no requirement for research novelty, but still frame how your work relates to prev
 - -cover both academic & relevant non-academic work
 - (you could reorder to have this section later)

Sample outlines: Design study II

- Data and Task Abstractions
 - -analyze your domain problem according to book framework (what/why)
 - -include both domain-language descriptions and abstract versions
 - -could split into data vs task, then domain vs abstract or vice versa!
 - -typically data first then task, so that can refer to data abstr within task abstr
 - -must have tight connections between data & task abstr
- Solution
 - -describe your solution idiom (visual encoding and interaction)
 - -analyze it according to book framework (how)
 - only for custom encodings, no need to repeat book material for standard chart types

-justify your design choices as solutions to problem set up w/ data/task abstractions

- provide rationale, discuss choices with respect to alternatives
- if significant algorithm work, discuss algorithm and data structures

Sample outlines: Design study III

Implementation

- medium-level implementation description
 - specifics of what you wrote vs what existing libraries/toolkits/components do
- Milestones
 - -breakdown of who did what work
 - -remember to update milestones: add actual hours/date to estimated hours/date
 - -totals required
- Results
 - -include scenarios of use, extensively illustrated with multiple screenshots of your software
 - walk reader through exactly how your interface succeeds (or falls short) of solving intended problem
 - report on evaluation, if you did any (eg deployment to target users, computational benchmarks)
 - screenshots should be png (lossless compression) not jpg (lossy compression)!
- Discussion / Future Work
 - -reflect on your approach: strengths, weaknesses, limitations
 - -lessons learned: what do you know now that you didn't when you started?
 - -future work: what would you do if you had more time?

Sample outlines: Design study IV

Conclusions

- summarize what you've done
- -different than abstract since reader has seen all the details
- Bibliography
 - note format is numerical & alphabetical
 - use citation manager / bibtex!
 - -make sure to use real references for work that's been published academically
 - not just URL
 - check arxiv papers, some have link to final publication venue, also search on titles!
 - -check carefully to ensure consistency & nothing mangled or missing
 - -most online sources require cleanup
 - see guidance at <u>https://www.cs.ubc.ca/~tmm/writing.html#refs</u>

Marking

• design study & technique & explainer

- 12.5% each for
 - -intro
 - -related work
 - -abstractions
 - solution
 - -implementation/milestones
 - results
 - discussion
- 10% style, 2.5% bibliography

Sample outlines: Technique (diffs)

- Abstract, Introduction (same as above) •
- **Related Work** \bullet

-big focus on similar solutions, some discussion of similar problems (same task/data combo)

Data and Task Abstractions \bullet

-much shorter than the corresponding one for design studies, framing context not core contrib

- Solution
 - -describing proposed idiom exactly, not justifying its use for particular domain problem
 - -as above, analyze in terms of design choices, justify why appropriate vs alternatives
- Implementation/Milestones (same as above)
- Results ullet
 - -less emphasis on scenarios with particular target users
 - -more emphasis on characterizing the breadth of possible uses
 - still definitely include screenshots of the system in action
- Discussion / Future Work, Conclusions, Bibliography (same as above) •

Sample outlines: Survey (diffs)

- Abstract (same as above)
- Introduction
 - discuss the scope of what you're covering, why it's interesting/reasonable partition compared to visualization as a whole
- Related Work
 - only previous surveys
 - focus on how your work is similar to or different from them, especially wrt coverage
- Main
 - break up into sections based on your own synthesis of themes of work covered
 - you might want a Background section at the start if domain-focused survey
 - where there's important vocabulary/ideas to establish before diving into main discussion
 - analyze visualizations proposed in these papers in terms of what/why/how framework (if applicable)
 - include images from papers
- Milestones, Discussion / Future Work, Conclusions, Bibliography (same as above)
- marking: intro (10%), relwork (10%), main (60%), milestones/discussion (10%), style (10%)

38

Sample outlines: Implementation (diffs)

- Abstract, Introduction (same as above) •
- **Related Work** \bullet
 - -paper you're reimplementing, maybe other closely related work for framing context
 - -much shorter than other project types
- Scope
 - -big picture of what you did, esp. only a subset of original paper or covering multiple papers
 - -nice to have somewhat comprehensible & standalone document but no need to explain in full
 - ok to discuss similarities and differences assuming familiarity with goals of original work
- Implementation
 - detailed implementation discussion: much more than other project types
 - -as above, include specifics of what you build on vs what you coded yourself
 - issues that arose: choices unclear in original, subtleties and nuances you discovered along the way, challenges in adapting toolkit capabilities

Sample outlines: Implementation (diffs)

- Results
 - -as above, should include screenshots of your software that illustrate scenarios of how to use it
 - but less emphasis particular target users in scenarios
 - -definitely include computational benchmarks to evaluate your work
- Milestones, Discussion / Future Work, Conclusions, Bibliography (same as above)
- marking: intro (10%), relwork (10%), main (60%), milestones/discussion (10%), style (10%)

Report marking

- required: at least material I've listed
 - -you may include more material
 - -you may choose alternate orderings
- reminder: project **content** is 60% of entire project mark - report is 25%, presentation is 15%
- you'll get detailed written feedback
 - combined: final presentation, final report, project content
 - -in some cases, next steps

Code / Video

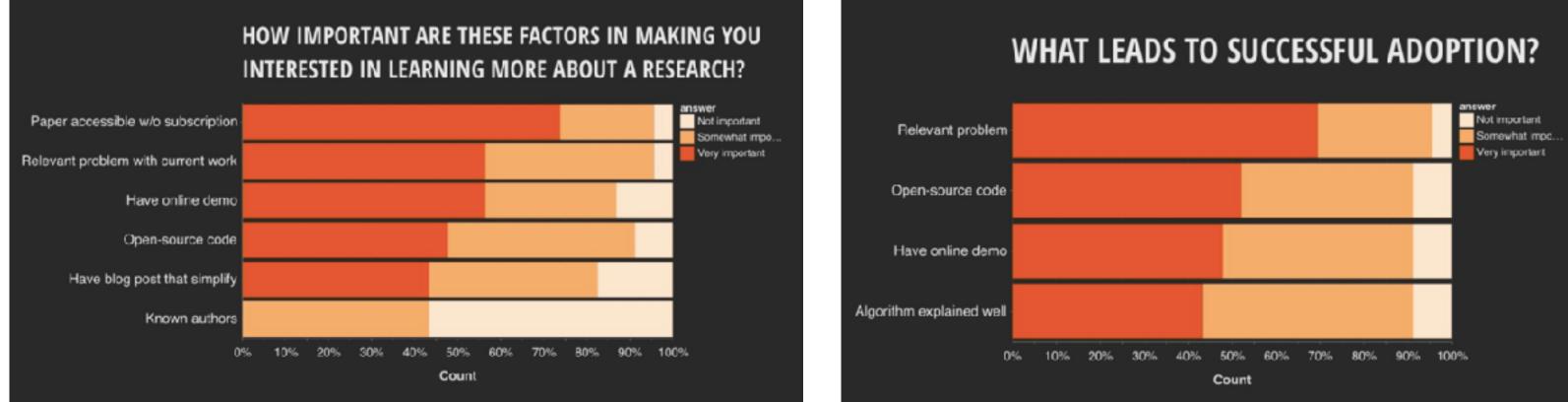
- required: submit your code
 - -so I can see what you've done, but I will not post
 - -include README.txt file at root with brief roadmap/overview of organization
 - which parts are your code vs libraries
 - how to compile and run
 - -but I do not necessarily expect your code compiles on my machine
 - no need to submit data if it's huge
- encouraged but not required
 - submit live demo URL (provide in README.txt file)
 - -open-source your code (if so, fine to just send me that URL)
 - submit supporting video (if different from final presentation)
 - with or without voiceover
 - voiceover is very very nice to have later, software bitrot makes demos not last forever!

Showcase image

- showcase image for projects page
 - -300x300 image
 - -call it showcase.png
 - required

Course Evaluations (link on Canvas)

Open Science: Available, Reproducible, & Replicable Research


Making your research available & reproducible: why bother?

- moral high ground -for Science!
- enlightened self-interest
 - make your own life easier
 - -you'll be cited more often by academics
 - -your work more likely to be used by industry

Making the world care about your research!

 Increasing the Impact of Visualization Research panel, VIS 2017 -Krist Wongsuphasawat, Data Visualization Scientist, Twitter

<u>https://www.slideshare.net/kristw/increasing-the-impact-of-visualization-research</u>

Disseminating research

- paper page for each paper
 - everything! PDF, supplemental materials, videos, software/demos, talk slides, figures, ...
 - examples:
 - Table Scraps, http://www.cs.ubc.ca/group/infovis/pubs/2020/table-scraps/
 - TimeLineCurator, http://www.cs.ubc.ca/labs/imager/tr/2015/TimeLineCurator/
- write blog post to accompany each paper
 - -very high-impact bang for the time buck
 - Multiple Views: Visualization Research Explained umbrella blog https://medium.com/multiple-views-visualization-research-explained
 - UW IDL individual lab blog
 - Surprise Maps: Showing the Unexpected https://medium.com/@uwdata/surprise-maps-showing-the-unexpected-e92b67398865
 - Bayesian Surprise Maps http://idl.cs.washington.edu/papers/surprise-maps/

Archival dissemination: what to provide

- paper
 - -post it online at non-paywalled site
- algorithm
 - -document well in paper itself
 - document further with code
- code
 - make available as open source (github.com)
 - -pick right spot on continuum of effort involved, from minimal to massive
 - just put it up warts and all, minimal documentation
 - well documented and tested
 - (build a whole community not the common case)
- supplemental materials

Supplemental materials: provide as much as possible

- demo videos: show interactive look & feel
- data for computational benchmarks & case studies -tricky issue in visualization: data might not be yours to release!
- qualitative work: thematic analysis raw & intermediate materials
- quant experimental stimuli: full set of images, not just a few examples
- quant evaluation: data analysis code/scripts
- evaluation: detailed study results -advance planning: ethics approval! if sanitize PII (personally identifiable information)
- technique refinement: previous iterations
- parameters: how exactly to regenerate/produce figures, tables
- additional case studies, screenshots, other exposition
- surveys / design spaces: interactive faceted browser – examples: treevis.net, dashboarddesignpatterns.github.io

Dissemination & reproducibility: motivation & howto

- Open Practices in Vis Research, Steve Haroz <u>https://osf.io/8ag3w/download</u>
- Cody Dunne VIS22 panel talk (10 min) <u>https://youtu.be/nPdr7xybUbA?t=260</u>
 - -why important to host stuff on site that will stay forever (arxiv.org, osf.io)
 - vs personal and even research group sites that can disappear
 - appropriately enough his slides hosted at <u>https://osf.io/mfk5z</u>
- <u>osf.io</u>
 - -great for supplemental materials in addition to paper (vs arxiv focus on paper PDF)
 - -can create anonymous view-only link for double-blind review
 - <u>https://help.osf.io/article/155-create-a-view-only-link-for-a-registration</u>
 - -advice: post when you submit, update with camera-ready
 - don't wait conference presentation, might not happen! (worse yet: promise will do it soon)
 - examples: <u>osf.io/tr3sb</u>, <u>osf.io/uezfk</u>

Reproducibility: Levels of effort required

- 5: I 5 minutes with free tools
- 4: 15 minutes with proprietary tools
- 3: considerable effort
- 2: extreme effort
- I: cannot seem to be reproduced
- 0: cannot be reproduced

[Vandewalle, Kovacevic and Vetterli. Reproducible Research in Signal Processing - What, why, and how. IEEE Signal Processing Magazine, 26(3):37-47, May 2009.]

52

Replication: crisis in psychology, medicine, etc

- early rumblings left me with (ignorable) qualms
 - -papers: Is most published research false?, Storks Deliver Babies (p=0.008), The Earth is spherical (p < 0.05), False-Positive Psychology
- groundswell of change for what methods are considered legitimate
 - -out: questionable research practices (QRPs)
 - p-hacking / p-value fishing / data dredging
 - Hypothesizing After Results are Known (HARKing)
 - —in
 - replication
 - pre-registration: avoid "garden of forking paths" & motivated reasoning
 - -brouhaha with bimodal responses
 - some people doubling down and defending previous work
 - many willing to repudiate (their own) earlier styles of working

Remarkable introspection on methods

- psych: thoughtful willingness to change standards of field
 - -Andrew Gelman's commentary on the Susan Fiske article
 - http://andrewgelman.com/2016/09/21/what-has-happened-down-here-is-the-winds-havechanged/
 - Simine Vazire's entire Sometimes I'm Wrong blog
 - http://sometimesimwrong.typepad.com/
 - especially posts on topic Scientific Integrity
 - -Joe Simmons Data Colada blog post What I Want Our Field to Prioritize
 - <u>http://datacolada.org/53/</u>
 - -Dana Carvey's brave statement on her previous power pose work
 - http://faculty.haas.berkeley.edu/dana_carney/pdf_My%20position%20on%20power%20poses.pdf
- vis:

When and how will this storm hit visualization?

- they're ahead of us (they = psychology)
 - -they have some paper retractions
 - we don't (yet) have any retractions for methodological considerations
 - -they agonize about difficulty of getting failure-to-replicate papers accepted
 - we hardly ever even try to do such work
 - -they are a much older field
 - we're younger: might our power hierarchies thus be less entrenched??...
 - -they are higher profile
 - we don't have vis research results appear regularly in major newspapers/magazines
 - -they have rich fabric of blogs as major drivers of discussion
 - crosscutting traditional power hierarchies
 - we have far fewer active bloggers
- replication crisis was focus of BELIV 2018 workshop at IEEE VIS
 - -evaluation and BEyond methodoLogIcal approaches for Visualization
 - -<u>https://beliv-workshop.github.io/2018/</u>

Next week: Research guests & more

- Steve Kasica (UBC)
 - qualitative research
- Stephen Kobourov (Arizona)
 - techniques & algorithms
- Mara Solen (UBC)
 - survey papers
- me
 - design spaces for visualization
 - visualizing imperfect models
 - next steps

57

Come talk!

- encourage meeting with me to get advice/feedback before final present -chance to get feedback while you can still act on it
 - -optional, not mandatory
 - -wise to schedule in advance by email
 - can't meet with all 14 teams in next week office hours, or in last few days!