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Fig. 1. Moc of proposed visualization. All details can be found in section 4. a) The time summary plot for satisfying R1.b. b) The Group
Line Plot. c) The three panes satisfying R2. d) the PCA Distance Plot

Index Terms—Multiple time scale, many series summary, integrated circuit reliability.

1 INTRODUCTION

Long-term reliability is a niche but critical aspect of modern electronics
design. Testing and planning for degradation and failures is incredibly
challenging; nearly all product development cycles are much shorter
than the required lifespans and so accelerated stress testing followed
by extrapolation/prediction is leveraged in lieu of direct testing. These
testing practices are the core focus of one author’s (Ian’s) doctoral the-
sis topic, and several shortcomings of existing reliability engineering
practices were identified in a survey paper published in IEEE Transac-
tions on Device and Materials Reliability [5]. A simulator has already
been developed that enables stochastic temporal simulation of wear-out
processes and Bayesian inference on wear-out models to address two
of these shortcomings.

Due to the model-agnostic implementation and probabilistic focus of
the developed simulator, visualizing the simulated stress, measurement
data, and specified stochastic models in a way that supports the variety
of user tasks enabled by the simulator presents a significant challenge.
This project develops a visualization tool to aid reliability engineers
carry out multiple user tasks that can be tackled using the simulator in an

effort to overcome the conceptual challenges of non-constant stress and
probabilistic models that engineers are not likely to be accustomed to.
Key tasks include iterative stress test design, test data failure analysis,
and model quality comparisons.

Our preliminary investigation found that in all three use cases engi-
neers will need to compare large quantities of scalar data series under
multiple stress configurations through time. The proposed solution,
GraceFall, handles diverse line graphs with dynamic time scales to aid
in these exploratory analysis tasks. The proposed visualization will
integrate with the existing simulator and thus be primarily developed
with Python.

2 RELATED WORK

There are two types of related works to discuss in order to place this
project in context, those within the integrated circuit wear-out reliability
space, and then those within the field of info visualization.

2.1 Integrated Circuit Reliability Visualizations
Integrated circuit reliability is not well known for effective visualization
tools, as the field is reasonably niche and driven by individual compa-
nies within the semiconductor industries. Reliability reporting is mostly
opaque to end users of integrated circuit products, thus visual represen-
tations of reliability and reliability tests are often neglected. Typically,



the visualizations that do get constructed are of poor quality. Common
visual representations of reliability test data include Weibull plots of
cumulative failures against time 2, or box plots showing degradation
distributions for different devices 3.

Fig. 2. Sample Weibull plot from Ian’s recent conference submission. Do
not distribute.

Fig. 3. Sample end-of-test degradation boxplots from Ian’s recent confer-
ence submission. Do not distribute.

We believe a key missing element towards effective understanding
of wear-out processes in existing reliability visualizations is temporal
comparison. We hypothesize that there are three main reasons why
temporal visualizations of wear-out are so rarely seen: (1) collecting
measurements during stress is costly and thus rarely is sufficient data
available for meaningful trends to be evident within the data; (2) product
reliability requirements are typically based on failure rates at some time
instant, thus results are often only displayed for that point; and (3)
visualizing the evolution of derived statistical quantities through time
is challenging from a design perspective as many channels are needed
and large sample sizes are prone to visual clutter. The first two reasons
for rarity are not applicable in the case of the developed simulator,
which imposes no measurement costs and is intended for developing
models and tests, not for evaluating product reliability at arbitrary
end-of-supported-life instants.

Some additional existing wear-out visualizations published by one
of the most recognizable researchers in the field are shown in Figure

4, highlighting the prevalence of visual clutter, overuse of contextual
labelling to frame data, and minimal consideration of how degradation
and/or failures evolve over time [13]. Interested readers can find even
more sample visualizations in [14, 18]. For Ian’s research, visual
representations are needed to eventually help engineers explore test
design spaces and compare different probabilistic models. The existing
visualizations such as those shown are not effective for design space
exploration tasks within this domain as they do not provide little to no
information on the stress resulting in wear-out or the models used to
produce or fit degradation and/or failure data.

Fig. 4. Examples of accepted visualizations within the IC reliability
research community from a well-regarded paper [13]

2.2 Relevant Information Visualization Design Studies and
Techniques

Moving on to how this project fits within data visualization research,
we are primarily focused on the application of visualization techniques
as opposed to the development of novel ones. With this in mind, our
project is suitably described as a design study, and can be positioned
relative to existing similar design projects of larger scope, namely KD-
Box [20] and Vismon [3]. KD-Box is a method that addresses line
cluttering of plotting many time-series by finding a representative line
using density. It is useful as a comparative study because it addresses
similar problems of visualizing time-series data from sensors where
many independent data series need to be summarized or reduced to
extract useful information about the collective. Vismon is a interactive
visualization tool allowing fishery scientist to explore hypothesis about
their models through sensitivity and constraint-based analysis. While
Vismon does not consider time series plots, its treatment of model
comparison across multiple views and incorporation of information
uncertainty is comparable to the design components encountered further
into the proposed project.

Additionally, specific design challenges within our project have been
explored by previous works. Although our project allocates significant
time for more detailed literature review, we have already looked at
some initial solutions for overcoming anticipated design challenges:

1. Multiple time scale plots introduce challenges when visualiza-
tion users are interested in both long-term summaries of tem-
poral data and in the more detailed structure of the same data
when considered over a short interval. Multiple techniques have
been introduced to in addressing this problem. Many tackle this
problem by showing a coarse to fine time scale approach. Time
calendar [17] representation provides a month scale summary is
provided by coloring the days on the calendar with a day-scale
view on the side. Time-Series-Path [2] provide a squeezed col-
orized bar summarizing the the property of the time series with
color while the detailed color representation is directly plotted
for viewing. ”Chronolensing” [19] allows interactivity enabling
users to choose desired their time scale view.



2. There are much work on plotting many time series. We will focus
on only ones that are relevant here. A general summary can be
found in [1]. Many works attempts to directly plot the time se-
ries and reduce the cluttering afterwards. This class of methods
include the use of density [12], grouping [10], and ordered plot-
ting [16] to make the plots easier to view. However, by doing so,
the visualization loses the fine resolution of individual time series
and, hence, difficult to detect anomalies from them. Other works
that maps each time series to points 2D space [9] [15] can see
the difference clearly, however, the dimension loses all semantic
meaning.

3. Users of the visualization are likely to want to compare different
tests or data sets in relation to one another, introducing a signifi-
cant challenge to effectively lay out multiple test plots within a
single view frame and navigate them. [3] can inform some initial
design decisions for this project aspect.

4. Visualizing mathematical models is an interesting challenge as
they don’t fit as cleanly within standard visualization conceptual
frameworks. The data object being shown is the output of an
expression that is variable, making the data dynamic when depen-
dent on other visualized data. A 2008 paper on plotting models
based on parameter selections is considered as a useful starting
point for this component of the project [11].

3 DATA AND TASK ABSTRACTION

A core problem reliability engineers encounter when analyzing a set
of test results is a poor understanding of how observed component
degradation depends on multiple induced stressors, especially as the
models used to explain physical degradation are incomplete and rely on
numerous physical assumptions. To understand how products degrade
and fail as a result of stress or to evaluate how well a model captures
complex physical phenomenon, engineers need to view the effects of
wear-out processes as a function of time. Without existing visualization
tools, engineers frequently need to compare multiple test results in
the form of pure numerical tables, a notoriously difficult data form to
analyze from. We introduce GraceFall to aid engineers in exploratory
analysis of temporal information available in wear-out test/measured
data, both simulated and real.

3.1 Data Set
Prior to dissecting the overarching visualization objective, it is neces-
sary to first present the specific data available. There are three major
data sets relevant to our visualization which we describe at an abstracted
level.

1. Tabular data listing values associated with several attributes. This
is long-form data with multi-attribute identification needed to
determine the value ”source”, along with an independent time
attribute. Specifically, each quantitative value is a measured quan-
tity associated with some quantitative time instant and categorical
sample source. A sample source is uniquely identified by the
combination of four attributes: type, circuit number, chip num-
ber, and lot number. Each of these attributes are individually
non-unique, and sample sources sharing the same chip number
and/or lot number field values will have potentially correlated
values. If the tabular data is separated by unique sample source,
each separable set of values will represent a single data series
of measured values at different instants in time. The quantity of
sample sources, samples per source, and value ranges are fully
unbounded, however will be restricted within the scope of the
GraceFall design requirements.

2. Tabular data listing values associated with a unique time interval.
Each row entry has an attribute for the quantitative value of each
applied stressor along with three quantitative attributes for start
time, end time, and duration of the unique time interval. A final
categorical attribute indicates the name of the stress interval but
is out of the scope of the GraceFall tool. The quantity of stressor

attributes, stressed time intervals, and value ranges are once again
unbounded but restricted within the scope of GraceFall.

3. Hypothesized mathematical models that can be fit to the mea-
surement data. These are mathematical expressions attempting
to explain the test results as fitted functions of the stress data. To
keep the project in a manageable scope, this project will restrict
the data to deterministic models as opposed to the eventual desire
to additionally support probabilistic ones. As this data type does
not fit into the framework introduced in the CPSC 547 course, the
visualized data for a fitted model will be simply represented as
sets of quantitative points.

3.2 Task Specification
To better analyze the visualization design problem of GraceFall we use
a generalized framing, thus the expected user tasks have been abstracted
and are summarized in Table 1.

Based on these tasks, design requirements have been developed
that will be used to inform the design decisions made as part of the
development of GraceFall. Early mock-ups identified several design
challenges that require the evaluation and selection of sophisticated
techniques to overcome.

1. C1 - Handling of clutter caused by many lines per graph due to
large quantities of data series on multiple time scales of interest.

2. C2 Users of the visualization are likely to want to compare differ-
ent tests or data sets in relation to one another, it is challenging
to effectively lay out multiple test plots with potentially different
features and navigate them.

3. C3 - Visualizing mathematical models is an interesting challenge
as they don’t fit as cleanly within standard visualization concep-
tual frameworks.

4. C4 - Multiple time scale plots introduce challenges when visu-
alization users are interested in both long-term summaries of
temporal data and in the more detailed structure of the same data
when considered over a short interval.

4 PROPOSED SOLUTION

The developed requirements for GraceFall used to implement the iden-
tified tasks and tackle the anticipated design challenges are shown in
Table 2.

4.1 Design Technique Decision Process
Design decisions are in progress; those that have been made will be
discussed here. To contextualize the following discussion, a mock-up
with the selected design features in shown in Figure 1. First, to address
R1.c in a way that mitigates the clutter risk discussed in challenge C1,
two view panes will be used for a given data set: a group line plot and
a PCA distance plot.

Group Line Plot The primary choice of visualizing the time-series
will be standard direct line plots as required in R1. Other visualization
techniques that conduct major data transform on the time-series data,
such as those utilizing PCA will not work, because it is of critical
importance for the user to see the detailed evolution of slope and
aggregate behaviour as time progresses. To allow users to easily identify
trends, k-means clustering will be used to meet R1.e and R1.a, and
will partially overcome C1, cluster-colouring time series with similar
properties as in [4, 7].

PCA Distance Plot Clustering by itself is insufficient as direct
line plot reduces the much needed resolution of the time series to find
points of interest. To address this, PCA reduction will be used to map
the time series down to a 2D point. Those points will be assigned
colours as in the k-means approach. These points can better identify
outliers as demonstrated by [15]. Further, when users pan over a region
with the same color, the mean time series will appear above the region
to give the user a sense of the underlying data. Additionally, within



Table 1. Abstracted task definitions for GraceFall visualization tool.

Task ID Priority Task Definition
T1 Mandatory Examine the statistical distribution evolution of multiple data series as time progresses
T1.a Important Find identifiable groups that show similar behaviour within the larger set
T1.b Mandatory Roughly track sample variance and likelihood region evolution, identify asymmetries
T1.c Important Catch outlier samples and propose probable causes for the outliers using background/meta data
T2 Mandatory Search for probable values in background/meta data that result in large changes to data series

trends in time
T3 Important Evaluate the success/performance of proposed models in explaining the observed data series
T4 Nice to Have Compare multiple different sets of background/meta data and their corresponding sets of data

series in terms of their influence on the outcomes of the previous three tasks

Table 2. GraceFall design requirements.

ID Priority Requirement Definition
R1 Mandatory Tool must display multiple data series against time
R1.a Important Up to five sets of data series can be visualized on the same axes
R1.b Mandatory Can change focus between multiple time scales of interest on demand
R1.c Mandatory Up to 1000 data series must be individually viewable simultaneously
R1.d Nice to Have Aggregate properties of sets of data series can be overlaid or substituted for raw data on demand
R1.e Nice to Have Provide automated classification of data series into groupings by similarity
R2 Mandatory Background/meta data is displayed alongside data series to maximize spatial ”closeness” /

minimize cognitive effort required to jump between viewing data series and meta data values
R2.a Mandatory Up to three meta data fields must be displayable simultaneously
R3 Important Proposal model outputs, dependent on background/meta data values, are displayable on the data

series axes on demand
R3.a Important Must be immediately visually distinguishable from displayed data series or statistical properties

of the data series
R4 Nice to Have Up to four data series axes views can be displayed simultaneously, arranged to maximize spatial

”closeness” / minimize cognitive effort required to jump between viewing different axes
R4.a Nice to Have Significant differences in background/meta data values between views can be highlighted on

demand

this view, the user can select and filter only the time series they are of
interest to show on the group line plot, allowing them to explore the
data they are only interested in.

To address R1.b, a way of navigating multiple time scale is required.
Although multiple techniques in the literature allow for this functional-
ity, lensing similar to that in [19] was selected for one key reason. The
other approaches mentioned in the Related Work section are discrete,
limiting the scales at which the user can explore the data. For wear-out
test data, the expected time scales of interest are not predefined and will
have to be fine-tuned depending on the test conducted and user task.
Allowing for continuously-defined time scales to be selected is thus
valuable to prioritize. To ease lensing navigation, a squeeze overview
of the full time interval will be provided. The user can select an area
that they wish to explore. The selected sequence will appear in the
Group Line Plot for exploration.

For requirement R2, the user needs to see stress data values with
ease to identify causes of trends in the primary data series. To satisfy
R2, a three long panes similar to [8] with small balls corresponding to
the magnitude of stress parameters will be shown on the bottom of the
Group Line Plot. This allows the user to compare a maximum of three
stress parameters at a time, satisfying R2.a. Compared to alternative
channels such as color, the eye can see the magnitude difference be-
tween size of balls with improved accuracy and precision, especially
as the vertical positions are aligned, effectively allowing for length
comparisons. This approach was compared to directly showing bar
charts when hovering over the points similar to the box plots in [2],
however that approach introduced occlusion and expected comparison
difficulties when displaying the values of three stressors simultaneously.

Requirements R3 and R4 are stretch goals, and so the design that
meets them are not yet finalized. The current plan of record is to reserve
black as the color representing a proposed model. Users can provide
a candidate model that will be graphed onto the Group Line Plot for
comparison.

4.2 Implementation

At time of writing, the design of GraceFall is still in some flux and so
technique implementation has not yet begun. To allow for rapid design
implementation, however, the selection of programming framework,
test data set construction, and boilerplate code implementation are
well underway. Initial data sets were generated through the existing
wear-out reliability simulator and attempt to encapsulate a variety of
different data sets with interesting features (e.g., subgroupings within
the data, unique stress tests, different and/or multiple types of degraded
values). Approximately five data sets will be used for the verification
and validation phase of GraceFall’s development, and the data sets
will be tuned as needed to introduce further interesting data features to
discover as part of the visualization tool tasks.

For the software implementation of GraceFall, the project was con-
strained to a Python-based toolset for ease of compatibility with the
existing wear-out reliability simulator and based on our prior familiarity
with the language. Five interactive visualization libraries/frameworks
were considered: Plotly, Bokeh, Mpld3, Gleam, and Vega-Altair. After
feature comparison among other criteria, Vega-Altair was selected for
implementing GraceFall. Although Plotly offered slightly more cus-
tomized design and additional features, it was determined to be much
more challenging to use, and Vega-Altair was a close second in terms
of feature-rich visualization design. An additional benefit of using
Vega-Altair is that it follows the Vega-Lite specification which follows
and extremely similar design space specification to that presented in
the CPSC 547 course, providing a valuable opportunity to work with a
tool that helps reinforce the learned concepts from classes.

With development data and the visualization framework available,
boilerplate to structure the GraceFall code base and outline the expected
execution flow has been written, and is available on GitHub [6]. As
of now, the GraceFall program can read in the data structures from a
standard format for use, and has a ’wishful programming’ functional
interface for the expected key steps in building a specific visualization
view (e.g., constructing data series view, overlay of stress summary



view, PCA construction, multiple test view arrangement). A quick
demonstration visualization was developed, shown in Figure 5. Note
that this visualization does not implement the planned visualization
design, merely a quick mockup for code testing purposes. In the figure,
simultaneous plotting of 1000 individual data series can be seen, and the
temperature stress during each stress summary interval forms the red
backdrop, contextualizing the data series. The figure demonstrates that
Vega-Altair features will at least be mostly sufficient for implementing
the designed visualization, even if interactivity features are not yet
tested. Additionally, the performance in constructing this visualization
is remarkably fast despite the large number of data series, and so it
is not expected that performance will become a limiting issue for the
initial version of GraceFall.

Fig. 5. Time-series visualization of wear-out data overlaid on stress
interval data using GraceFall boilerplate code.

5 MILESTONES

Our visualization can conveniently be divided into a few conceptual
components that are reasonably separate in terms of design, easing the
process of breaking down the project into tasks. In terms of milestones,
we define three internally: 1) Literature Review Completed, 2) Design
Plan Work Completed, and 3) Implementation and Testing Completed.
Reports are not included in these internal milestone descriptions. A
summary of the project execution plan, vertically divided by milestone
and course deliverable tasks (tasks defined by feature requirements), is
provided as a Gantt chart in Figure 6.

Some key elements within the provided Gantt chart are the mile-
stone and deliverable deadlines and dependency ordering of literature
review to design plan down to implementation for the different design
components. The project update deadline is on November 15th, or just
into week 3 of November, the project presentation is December 14th, or
middle of week 2, and the final report is due on December 16th, the end
of that same week. Based on the work breakdown within the chart, each
filled cell can be mapped to approximately 4 hours of expected work to
obtain an estimate of project effort that slightly overshoots the course
recommendation for total project work hours. The project group has no
issue with this light increase in workload. The Milestone 1 deadline
is set for middle of week 2 in November (32 hours of expected work),
Milestone 2 by end of November week 4 (56 hours), and 3 by end of
week 1 December (80 hours).

To date, progress has remained reasonably on schedule compared
to the chart provided at the proposal phase, however a few items were
delayed due to issues of group member sickness in W1 November. At
this point there is little anticipated risk to overall project execution;
development should be completed in good time.

Due to the large planned scope of the project, there is a significant
risk that the available time will be insufficient to design and implement
all desired features. To mitigate this risk the model fitting design
component has been designated as lower importance; if necessary this
aspect of the project can be cut. Doing so would save 40 hours of
allocated time, based on the chart timeline breakdown, that can then
be reallocated to the test data integration plots and test plot navigation
portions of the project as needed.

6 CONCLUSIONS

The GraceFall tool will tackle a challenging visualization problem,
cleanly displaying highly varied scalar data series to avoid the large
potential for visual clutter and obscured properties of interest. If suc-
cessful, the tool will greatly aid engineers in developing accelerated
reliability stress test procedures and tuning models for explaining phys-
ical degradation phenomenon. The large scope of this project necessi-
tates a clear execution plan which has been developed to maximize the
potential of constructing an effective solution.
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