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Fig. 1. Interface of the GraceFall visualization tool running on a data set showing degradation of gate oxide resistance for integrated
transistors. Linked highlighting between a data series and the corresponding PCA mark is shown. All code to run the tool and the
dataset seen here can be found on the project repository page at https://github.com/ianrmhill/gracefall [6].

Index Terms—Multiple time scale, many series summary, integrated circuit reliability.

1 INTRODUCTION

Wear-out reliability is a niche but critical aspect of modern electronics
design. Testing and planning for degradation and failures as computer
chips age is incredibly challenging; nearly all product development
cycles are much shorter than the required product lifespans and so
accelerated stress testing followed by extrapolation/prediction is lever-
aged in lieu of direct testing. These testing practices are the core focus
of one author’s (Ian’s) doctoral thesis topic, and several shortcomings
of existing reliability engineering practices were identified in a survey
paper published in IEEE Transactions on Device and Materials Reliabil-
ity [5]. A simulator has already been developed that enables stochastic
temporal simulation of wear-out processes and Bayesian inference on
wear-out models to address two of these shortcomings.

Whether wear-out test data is sourced from this simulator or physi-
cal experiments, engineers must interpret and process the conducted
measurements to ensure the test was carried out successfully, that wear-
out reliability requirements are met, and that unexpected results are
investigated and attributed to stress conditions or other test parameters
appropriately. This project introduces a visualization tool that can aid
reliability engineers in carrying out the listed activities in an effort
to overcome the conceptual challenges of modern reliability testing.
These difficulties include non-constant stress conditions, probabilistic
physical models, and increasingly diverse reliability requirements that
engineers are not likely to yet be accustomed to.

Our preliminary investigation found that in all anticipated use cases

engineers will need to compare large quantities of scalar data series
arising from conducted test measurements under multiple stress con-
figurations through time. The introduced solution, GraceFall, handles
diverse line graphs with dynamic time scales to aid in these exploratory
analysis tasks by providing a diverse range of statistical analysis tech-
niques ranging from dimensionality reduction to view filtering to data
aggregation. Additionally, GraceFall integrates with the aforemen-
tioned simulator to allow for rapid iteration on test design, simulation,
and analysis tasks.

2 RELATED WORK

There are two classes of related works to discuss in order to place this
project in context, those within the integrated circuit wear-out reliability
space, and then those within the field of info visualization.

2.1 Integrated Circuit Reliability Visualizations
Integrated circuit reliability is not well known for effective visualization
tools, as the field is reasonably niche and driven by individual compa-
nies within the semiconductor industries. Reliability reporting is mostly
opaque to end users of integrated circuit products, thus visual represen-
tations of reliability and reliability tests are often neglected. Typically,
visualizations are focused purely on summary statistics for reporting
and obscure all the data that produces these resulting statistics. Com-
mon visual representations of reliability test data include Weibull plots
of cumulative failures against time 2, or box plots showing degradation
distributions for different devices 3.

We believe a key missing element towards effective understanding
of wear-out processes in existing reliability visualizations is temporal
comparison. We hypothesize that there are three main reasons why
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Fig. 2. Sample Weibull plot from Ian’s recent conference submission.

Fig. 3. Sample end-of-test degradation boxplots from Ian’s recent confer-
ence submission.

temporal visualizations of wear-out are so rarely seen: (1) collecting
measurements during stress is costly and thus rarely is sufficient data
available for meaningful trends to be evident within the data; (2) product
reliability requirements are typically based on failure rates at some time
instant, thus results are often only displayed for that point; and (3)
visualizing the evolution of derived statistical quantities through time
is challenging from a design perspective as many channels are needed
and large sample sizes are prone to visual clutter. The first two reasons
for rarity are not applicable in the case of the developed simulator,
which imposes no measurement costs and is intended for developing
models and tests, not for evaluating product reliability at arbitrary
end-of-supported-life instants.

Some additional existing wear-out visualizations published by one
of the most recognizable researchers in the field are shown in Figure
4, highlighting the prevalence of visual clutter, overuse of contextual
labelling to frame data, and minimal consideration of how degradation
and/or failures evolve over time [13]. Interested readers can find even
more sample visualizations in the works of Park et al. and Chuang
Yang [14, 19]. For Ian’s research, visual representations are needed
to eventually help engineers explore test design spaces and compare
different probabilistic models. The existing visualizations such as those
shown are not effective for design space exploration tasks within this
domain as they do not provide little to no information on the stress

resulting in wear-out or the models used to produce or fit degradation
and/or failure data.

Fig. 4. Examples of accepted visualizations within the IC reliability
research community from a well-regarded paper [13]

2.2 Relevant Information Visualization Design Studies and
Techniques

Moving on to how GraceFall fits within data visualization research,
the tool is primarily focused on the application of visualization tech-
niques as opposed to the development of novel ones. With this in mind,
the project is suitably described as a visualization design study and
can be positioned relative to existing similar design projects of larger
scope, namely KD-Box [21] and Vismon [3]. KD-Box is a method
that addresses line cluttering of plotting many time-series by finding a
representative line using density. It is useful as a comparative study be-
cause it addresses similar problems of visualizing time-series data from
sensors where many independent data series need to be summarized
or reduced to extract useful information about the collective. Vismon
is a interactive visualization tool allowing fishery scientist to explore
hypothesis about their models through sensitivity and constraint-based
analysis. While Vismon does not consider time series plots, its treat-
ment of model comparison across multiple views and incorporation
of information uncertainty is comparable to the design components
encountered further into the proposed project.

Additionally, specific design challenges within our project have been
explored by previous works. Although our project allocates significant
time for more detailed literature review, we have already looked at
some initial solutions for overcoming anticipated design challenges:

1. Multiple time scale plots introduce challenges when visualiza-
tion users are interested in both long-term summaries of tem-
poral data and in the more detailed structure of the same data
when considered over a short interval. Multiple techniques have
been introduced to in addressing this problem. Many tackle this
problem by showing a coarse to fine time scale approach. Time
calendar [18] representation provides a month scale summary is
provided by coloring the days on the calendar with a day-scale
view on the side. Time-Series-Path [2] provide a squeezed col-
orized bar summarizing the the property of the time series with
color while the detailed color representation is directly plotted
for viewing. “Chronolensing” [20] allows interactivity enabling
users to choose desired their time scale view.

2. There are much work on plotting many time series. We will
focus on only ones that are relevant here. A general summary
can be found in a survey paper by Ali et al. [1]. Many works
attempt to directly plot the time series and reduce the cluttering
afterwards. This class of methods include the use of density [12],
grouping [10], and ordered plotting [17] to make the plots easier
to view. However, by doing so, the visualization loses the fine



resolution of individual time series and, hence, difficult to detect
anomalies from them. Other works that maps each time series to
points 2D space [9] [16] can see the difference clearly. However,
the dimension loses all semantic meaning.

3. Users of the visualization are likely to want to compare different
tests or data sets in relation to one another, introducing a signifi-
cant challenge to effectively lay out multiple test plots within a
single view frame and navigate them. [3] can inform some initial
design decisions for this project aspect.

4. Visualizing mathematical models is an interesting challenge as
they don’t fit as cleanly within standard visualization conceptual
frameworks. The data object being shown is the output of an
expression that is variable, making the data dynamic when depen-
dent on other visualized data. A 2008 paper on plotting models
based on parameter selections is considered as a useful starting
point for this component of the project [11].

3 DATA AND TASK ABSTRACTION

A core problem reliability engineers encounter when analyzing a set
of test results is a poor understanding of how observed component
degradation depends on multiple induced stressors, especially as the
models used to explain physical degradation are incomplete and rely on
numerous physical assumptions. To understand how products degrade
and fail as a result of stress or to evaluate how well a model captures
complex physical phenomenon, engineers need to view the effects of
wear-out processes as a function of time. Without existing visualization
tools, engineers frequently need to compare multiple test results in
the form of pure numerical tables, a notoriously difficult data form to
analyze from. We introduce GraceFall to aid engineers in exploratory
analysis of temporal information available in wear-out test/measured
data, both simulated and real.

3.1 Data Set
Prior to dissecting the overarching visualization objective, it is neces-
sary to first present the specific data available. There are three major
data sets relevant to our visualization which we describe at an abstracted
level.

1. Tabular data listing values associated with several attributes. This
is long-form data with multi-attribute identification needed to
determine the value ”source”, along with an independent time
attribute. Specifically, each quantitative value is a measured quan-
tity associated with some quantitative time instant and categorical
sample source. A sample source is uniquely identified by the
combination of four attributes: type, circuit number, chip num-
ber, and lot number. Each of these attributes are individually
non-unique, and sample sources sharing the same chip number
and/or lot number field values will have potentially correlated
values. If the tabular data is separated by unique sample source,
each separable set of values will represent a single data series
of measured values at different instants in time. The quantity of
sample sources, samples per source, and value ranges are fully
unbounded, however will be restricted within the scope of the
GraceFall design requirements.

2. Tabular data listing values associated with a unique time interval.
Each row entry has an attribute for the quantitative value of each
applied stressor along with three quantitative attributes for start
time, end time, and duration of the unique time interval. A final
categorical attribute indicates the name of the stress interval but
is out of the scope of the GraceFall tool. The quantity of stressor
attributes, stressed time intervals, and value ranges are once again
unbounded but restricted within the scope of GraceFall.

3. Hypothesized mathematical models that can be fit to the mea-
surement data. These are mathematical expressions attempting
to explain the test results as fitted functions of the stress data. To
keep the project in a manageable scope, this project will restrict

the data to deterministic models as opposed to the eventual desire
to additionally support probabilistic ones. As this data type does
not fit into the framework introduced in the CPSC 547 course, the
visualized data for a fitted model will be simply represented as
sets of quantitative points.

3.2 Task Specification
To better analyze the visualization design problem of GraceFall we use
a generalized framing, and thus the expected user tasks mentioned in
the introduction were abstracted to a more general data perspective,
with the resulting tasks summarized in Table 1.

Due to time constraints, only tasks T1 and T2 were addressed in
the initial version of GraceFall completed in the scope of this project.
Tasks T3 and T4 remain as valuable items to address and will be tackled
for the next release version of GraceFall.

4 SOLUTION DESIGN

Based on the abstracted user tasks, the developed requirements for
GraceFall are shown in Table 2. Note that the requirements R3 and R4
associated with tasks T3 and T4 were not able to be addressed within
the scope of the initial version of the tool and so are left to future work.

4.1 Design Technique Decision Process
To contextualize the following discussion, an early mock-up using
selected design features in shown in Figure 5. First, to address R1.c
in a way that mitigates the clutter risk discussed in challenge C1, two
view panes will be used for a given data set: a group line plot and a
PCA plot.

Fig. 5. Mockup of proposed visualization. All details can be found in
section 4. a) The time summary plot for satisfying R1.b. b) The Group
Line Plot. c) The three panes satisfying R2. d) the PCA Plot

Group Line Plot (GLP) The primary choice of visualizing the
time-series will be standard direct line plots as required in R1. Other
visualization techniques that conduct major data transform on the time-
series data, such as those utilizing PCA will not work, because it is of
critical importance for the user to see the detailed evolution of slope
and aggregate behaviour as time progresses. To allow users to easily
identify trends, k-means clustering will be used to meet R1.e and R1.a,
and will partially overcome C1, cluster-colouring time series with
similar properties as in [4, 7].

PCA Plot Clustering by itself is insufficient as direct line plot
reduces the much needed resolution of the time series to find points of
interest. To address this, PCA reduction will be used to map the time
series down to a 2D point. Those points will be assigned colours as
in the k-means approach. These points can better identify outliers as
demonstrated by [16]. Further, when users pan over a region with the
same color, a small panel will appear above the region showing the
mean time series derived from K-means to give the user a sense of the
underlying data. Additionally, within this view, the user can select and



Table 1. Abstracted task definitions for GraceFall visualization tool.

Task ID Priority Task Definition
T1 Mandatory Examine the statistical distribution evolution of multiple data series as time progresses
T1.a Important Find identifiable groups that show similar behaviour within the larger set
T1.b Mandatory Roughly track sample variance and likelihood region evolution, identify asymmetries
T1.c Important Catch outlier samples and propose probable causes for the outliers using background/meta data
T2 Mandatory Search for probable values in background/meta data that result in large changes to data series

trends in time
T3 Important Evaluate the success/performance of proposed models in explaining the observed data series
T4 Nice to Have Compare multiple different sets of background/meta data and their corresponding sets of data

series in terms of their influence on the outcomes of the previous three tasks

Table 2. GraceFall design requirements.

ID Priority Requirement Definition
R1 Mandatory Tool must display multiple data series against time
R1.a Important Up to five sets of data series can be visualized on the same axes
R1.b Mandatory Can change focus between multiple time scales of interest on demand
R1.c Mandatory Up to 1000 data series must be individually viewable simultaneously
R1.d Nice to Have Aggregate properties of sets of data series can be overlaid or substituted for raw data on demand
R1.e Nice to Have Provide automated classification of data series into groupings by similarity
R2 Mandatory Background/meta data is displayed alongside data series to maximize spatial “closeness” /

minimize cognitive effort required to jump between viewing data series and meta data values
R2.a Mandatory Up to three meta data fields must be displayable simultaneously
R3 Important Proposal model outputs, dependent on background/meta data values, are displayable on the data

series axes on demand
R3.a Important Must be immediately visually distinguishable from displayed data series or statistical properties

of the data series
R4 Nice to Have Up to four data series axes views can be displayed simultaneously, arranged to maximize spatial

”closeness” / minimize cognitive effort required to jump between viewing different axes
R4.a Nice to Have Significant differences in background/meta data values between views can be highlighted on

demand

filter only the time series they are of interest to show on the group line
plot, allowing them to explore the data they are only interested in.

To address R1.b, a way of navigating multiple time scale is required.
Although multiple techniques in the literature allow for this functional-
ity, lensing similar to that in [20] was selected for one key reason. The
other approaches mentioned in the Related Work section are discrete,
limiting the scales at which the user can explore the data. For wear-out
test data, the expected time scales of interest are not predefined and will
have to be fine-tuned depending on the test conducted and user task.
Allowing for continuously-defined time scales to be selected is thus
valuable to prioritize. To ease lensing navigation, a squeeze overview
of the full time interval will be provided. The user can select an area
that they wish to explore. The selected sequence will appear in the
Group Line Plot for exploration.

For requirement R2, the user needs to see stress data values with
ease to identify causes of trends in the primary data series. To satisfy
R2, a three long panes similar to [8] with small balls corresponding to
the magnitude of stress parameters will be shown on the bottom of the
Group Line Plot. This allows the user to compare a maximum of three
stress parameters at a time, satisfying R2.a. Compared to alternative
channels such as color, the eye can see the magnitude difference be-
tween size of balls with improved accuracy and precision, especially
as the vertical positions are aligned, effectively allowing for length
comparisons. This approach was compared to directly showing bar
charts when hovering over the points similar to the box plots in [2],
however that approach introduced occlusion and expected comparison
difficulties when displaying the values of three stressors simultaneously.

4.2 Implementation

For the implementation of the design solution, it was desirable to have
sample data sets for verification and validation. The data sets used
in this project are generated through the existing wear-out reliability
simulator and attempt to encapsulate a variety of different data sets
with interesting features (e.g., subgroupings within the data, unique

stress tests, different and/or multiple types of degraded values). In total,
three data sets were constructed: (1) a ramp voltage test producing
degradations in amplifier gain for highlighting simulator performance
on large quantities of data series, (2) a riverbed erosion data set for
highlight stochastic variation identification across data series groupings,
and (3) a resistance degradation test with three separate resistor types to
capture a maximally diverse range of degradation types and behaviours.
Examples of the completed GraceFall tool running on datasets 2 and 3
are shown in Figures 6 and 7 respectively.

For the software implementation of GraceFall the project was con-
strained to a Python-based toolset for ease of compatibility with the
existing wear-out reliability simulator and based on our prior familiarity
with the language. Five interactive visualization libraries/frameworks
were considered: Plotly, Bokeh, Mpld3, Gleam, and Vega-Altair. After
feature comparison among other criteria, Vega-Altair was selected for
implementing GraceFall. Although Plotly offered slightly more cus-
tomized design and additional features, it was determined to be much
more challenging to use, and Vega-Altair was a close second in terms
of feature-rich visualization design. An additional benefit of using
Vega-Altair is that it follows the Vega-Lite specification which follows
an extremely similar design space specification to that presented in the
CPSC 547 course, providing a valuable opportunity to work with a tool
that helps reinforce the learned concepts from classes.

With development data and the visualization framework available,
we organized the structure of our program into three main components.
These include (1) creating Altair selectors that supports interactivity
across views, (2) generating the main views, such as the time series and
the PCA plot, and 3) combining them all together. Selectors include
single and multiple selection. The selectors are combined with Altair
conditioning to filter the data to be visualized chosen by the user. The
combination of these two enables diverse interactivity and responses
across all views from a single interactive action performed by the
user. Altair, unfortunately, does not offer manipulation in the colour
luminance channel. As consequence, it limited our ability to implement



Fig. 6. Completed visualization tool displaying riverbed erosion data, with each ”chip” group representing a single river and ”lot” representing a set of
rivers in a similar geographic environment.

a encoding that distinguishes the different semiconductor chips. Further,
feature gaps forced us to give up on creating a nice area mark since
they are unsupported in Altair for K-means. This is discussed further
in section 5.1.

5 RESULTS

This section describes the completed visualization tool as well as a
possible use case walkthrough.

5.1 Resulting Visualization
Our resulting visualization closely follow the designs described in
section 4. It consists of two main plots, a time-series plot (TSP) and
a PCA plot, to visualize the time series data. To support, panes below
the TSP show the stress applied at each time interval for comparison
within the TSP. A time summary plot above the TSP enables navigation
in multiple time scale. We added two filters on the side for users to
select time series of interests to reduce the cluttering. Different from
what is described in section 4, K-means is not used to color the points
in the PCA view. Also, the showing of the k-means time series when
panning over a clustered region is not implemented due to limitations
in Altair and will be discussed in Section 6.5. Instead, we colored them
with respect to hierarchical groupings. To be specific, the hierarchical
groupings are Lot and Chip where Lot refers to the batch of computer
chips produced at the same time, and Chip refers to the location of
the placement of the computer chip. Further, we included average
operations over the time series at the global, Lot and Chip level. The
operations are selectable in the drop down menu at the bottom of left
of our visualization tool. These operations reduce clutter and allow
users to have a quick summary of the time series. The change of K-
means colouring scheme and implementation of the filters and average
operations will be discussed in section 6.1.

5.2 Qualitative Validation
Our visualization tool can aid in finding outlier time series and the
identifying the cause of the time series’ abnormal behavior. We tested
it ourselves. The PCA plot easily enable us to find a time series with
abnormal change. Subsequently, from looking at the stress data panes,
we identify the stress factor that it was causing the abnormal behavior.

5.3 Use Case: Investigating Cause of Degradation
An engineer is interested in investigating the experiment results of the
stress applied to batches of computer chips and placed at different loca-
tions referring to different Lot and Chip respectively. After loading the

data set into GraceFall, all the time series are on the TSP. Unfortunately,
the large data set results in the view beingover cluttered. To get a broad
sense of time series behaviour, the engineer looks at the PCA plot
finding the time series are generally clustered together on a Lot level.
Further investigation found that there is one batch of chips that are
away from the other batches, a cluster of outliers. The engineer select
the batch on the PCA plot and apply a Lot level average operation to
get a sense of the behavior of the time series in that batch. The engineer
cycles through the batches using the Lot filter to see what the other
cluster of time series look like. The engineer found that the outlier
cluster degrades severely between time 300 and 400. The engineer
looks at the stress panes at the bottom of the TSP and found that the
temperature is increasing rapidly at that period of time. The engineer
revisit the hierarchical group filters and finds that those experiments
belong to Chip 2. Subsequently, the engineer form a hypothesis that
the placement of those chips cause the chips to be more susceptible
to heat. This finding, then, guides the engineer to investigate in the
real hardware, saving him much time in exploring the experiment data
when GraceFall is unavailable.

5.4 Developer Use
Another good indicator for the success of the developed visualization
tool is its use by the developer Ian in pursuit of generating interesting
data sets for his research. Using GraceFall, it was easy to identify
behaviours resulting from simulation parameters and to iterate on the
tests and device models to produce intended behaviours that could very
quickly be analyzed in the tool. This rapid iterative process would not
have been otherwise possible.

6 DISCUSSION

This section will describe and motivate our design changes. Subse-
quently, we will discuss the strengths and limitations of GraceFall in
its current state.

6.1 Design Choice Changes
6.1.1 PCA Point Coloring
In our original designs, the points on the PCA plot are to be colored by a
class assigned by K-means and overlayed with an area mark encircling
the class. During implementation, it was found that it was important
for the user to identify when and where the chip is produced and placed.
Hence, we use the color channel of the PCA points to represent the
Lot and Chip hierarchical levels. However, after such a change, the
color of each point conflict with the color of our in-development area



Fig. 7. Completed visualization tool displaying a data set of increasing wirebond resistance as corrosion affects the composing metal alloy.
Annotations showing the different elements of the tool interface are shown.

mark labeled by K-means. The conflict overloads the color channel
leading to ambiguity as to what attribute it represents (saturation and
luminance channels were not available). To deal with this issue, the
decision is made not to use K-means coloring. As a consequence of the
color encoding change, the Group Line Plot will no longer be colored
by K-means classes and will be colored by the hierarchical levels, and
the Group Line Plot will just be a normal time-series plot (TSP).

6.1.2 Hierarchical Group Filters
With the K-means coloring strategy removed, the cluttering issue be-
comes unaddressed. We exploit the fact that users are interested in
investigating one subset of time series at a time and introduce hierarchi-
cal group filters. Hierarchical Group Filters provide the option for the
user to select the Lot and Chip they are interested in investigating by
hiding the unselected time series. The hiding of unselected time series
reduce clutter and enables the user to focus on the specific data series
of interest and analyze them.

6.1.3 Aggregation panel
Even after hierarchical group filtering is applied, we found the number
of time series on the TSP still present a problem of information overflow.
Concretely, it is difficult to parse useful information when looking at
a large number of time series. To address this issue, we introduce
averaging operations that allos users to get a quick sense of the data
present through reduced visual clutter via aggregation. The operation
can be performed on a global scale where by the average operation is
performed across all time series by averaging their values at each time
stamp to obtain a new average time series. Similarly, such operation
can be performed on a Chip and Lot level. The averaged time series
will capture both the values and gradient of the selected subset. As a
result, they provide a summary information of the selected time series.

6.2 Strengths
Our tool presents several advantages in visualizing a large number of
time series through the use of PCA plot, hierarchical group filters, and
averaging operations. Additionally our tool enable the ease of observing
stress factors affecting the times series through data panes at the bottom
of the TSP. The use of a PCA plot allows users to see the differences
between time series easier. It is difficult to identify differences between
time series directly observing the time series in the TSP. The PCA takes
into account of the properties of each time series, namely their value

and gradients, and project them onto a 2d plane. This projection will
serve as summery of the entire time series. Comparing time series in a
2d representation is much easier as one does not need to memorize the
shape of each time series to conduct a comparison. Since PCA takes
into many properties of a time series, time series that are similar are
close together while those that are different are far away. Hence, it is
also much easier to identify outliers in the PCA plot. In our application,
it is easier to identify time series that behave differently from others
under different stress factors.

Additionally, the tool addresses the time series cluttering issue
through the use of of hierarchical group filtering and average oper-
ations. Specifically, hierarchical group filtering will remove time series
that are not of interest causing cluttering to reduce. Though the number
of time series have reduced, deriving insights can still be difficult if
many time series remain. Our averaging operations can address this by
providing a summary of the remaining time series which gives the user
an idea of their overall performance as well as properties to look for
when searching for outliers.

GraceFall can also assist in analyzing relationship between the time
series and their underlying stress factors through the stress factor data
panel. By representing the value of the each stress as a rectangle
between each time period, users can easily discern the different period
which the stress are applied as well as their magnitude. The direct
placement under the TSP allows quick comparison between the stress
factors and the time series, reducing the amount of attention required
for analysis.

6.3 Limitations
Though much effort has been put into resolving the time series clutter
issue, it is not fully resolved in our tool. This problem is apparent when
comparing many different time series. Multiple time series still overlay
on top of each other despite our efforts. The overlaying obstructs
requires the user to first parse a clean version of their target time series,
as consequence, inducing mental effort during time series comparison
and in selecting the filtering or aggregation techniques to apply. Another
challenge is that the current solution to supports the exploration of the
data sets in various time scales will fail in extreme cases where a
single data set incorporates time ranges in both large magnitudes and
sub-second stress phases.

Regarding the meta/stress data, though having the stress data panel
under the TSP eases comparison, the problem is not fully solved. For



time series that are on the top of the TSP, it is difficult to identify where
is the exact location at which the stress is being applied. This difficulty
translates to difficulty in conducting comparison between time series.

Finally, the PCA plot introduces a new problem that is not present
originally. The dimensions resulted from performing dimension re-
duction are not interpretable. The user will have no idea what the
underlying time series look like simply from observing the point with-
out referring back to the TSP. The only information the PCA plot
communicates is that some time series are similar and different and
that there are trends in the data set. It does not communicate any
information about what those trends might be.

7 FUTURE WORK

Over the course of this project, we have made great strides in addressing
tasks T1, T2. However, due to time limitation, tasks T3 and T4 were
not addressed, focusing on the visualization of models and multiple
tests. Additionally, some of the limitations of the developed solution
described in the previous section can be improve with further efforts,
namely the stress data comparison issue and the lack of interpretability
in the PCA plot. After addressing some of the current limitations,
model visualization will be prioritized over multiple test visualization
based on our use case prioritization. The key enhancements scoped for
the second version of the tool are detailed in the following subsections.

7.1 Stress Meta Data Vertical Time Markers
The ambiguity of when exactly a stress is applied can be mitigated
by adding additional markers. A obvious marker to add is to add
vertical lines at locations where the change of stress value happens.
The vertical lines will clearly crossover with the time series. This
solution is imperfect as it conflicts with the color channel of the time
series and does not address that there are many stress factors. As such,
more thoughts are required.

7.2 Interpretability of PCA
The lack of interpretability of the PCA plot can be alleviated in two
ways. The first is to implement a pop up of the mean time series when
a mouse hovers over a set of points in the PCA plot. The mean time
series can be obtained by averaging the time series of the points within
a circle with some radius. This will give a sense of what the time series
the point on the PCA plot might represent. Second, a small summary
window should be provided providing the top component of the data
series contributing to the resulting axis during dimension reduction.
The weights of the components can be easily obtainable in the weights
of the PCA algorithm. These weights can inform the user what the PCA
algorithm deemed most important when constructing the 2d points.

7.3 Model Visualization
Model visualization is an unexplored task we in this project due to
limited time. This task is critical to be pursued further due to its
immense application. Having a model visualization will allow users to
quickly form a hypothesis and test the hypothesis against the recorded
data. This allows for iterative hypothesis formulation and aid further
experiment designs.

8 LESSONS LEARNED

Over the course of this project we were particularly excited to apply
some of the techniques learned through the Visual Analysis & Design
text. One of the reasons we selected the Altair for Vega-Lite library
was due to its close correspondence with the marks and channels de-
sign framework introduced in the course. This selection helped us
gain a firmer grasp of the course terminology, along with an intuitive
understanding of the type of data that each marks and channels can
represent. It was also a joy to discover the many other methods in
the visualization literature. The use of PCA plots for summary was a
particularly enjoyable avenue to explore.

In the early stages of the implementation process, we were impressed
with the convenience that the visual grammar Vega-Lite provided [15].
After some time, however, we realized that no tool can act as a panacea.
Vega-Lite lacked many features required by our designed solution and

resulted in design changes and limitations. Some examples include the
lack of dedicated saturation and luminance channels, or the inability
to have text or views change dynamically based on interactions with
the visualization. Perhaps we could have selected a more versatile
visualization library, however our lack of experience made this selection
process challenging and we do not feel that our decision was poor within
the context of our knowledge at the time.

Another lesson we learned, arguably the most important one, is the
process of design. Early on we stumbled into the blunder of trying to
a nail for the chosen hammer. After finding interesting visualization
techniques there was incentive to implement them without a proper
analysis of the tasks a user will perform, and the initial resulting design
had a slight mismatch with our targeted tasks as a result. We believe
that our final design, incorporating proper task and data set analysis,
is a much better match for the anticipated use cases. It is immensely
valuable to see the quality of the different products that resulted from
two different design mindsets.

9 CONCLUSIONS

The developed visualization tool GraceFall successfully tackles a chal-
lenging visualization problem. Capable of cleanly displaying highly
varied scalar data series and providing valuable tools to investigate
both individual and group behaviours, the tool enables reliability engi-
neers to analyze their simulated and physical test results for anomalies,
complex physical influences, and predicted wear-out reliability. Al-
though many features had to be relegated to future versions, the initial
release implements all the core functionality required for a successful
minimum viable product. Ongoing work to iterate on the design will
result in further improvements, with GraceFall hopefully providing
invaluable aid in tackling the complexities of modern integrated circuit
reliability challenges.

10 MILESTONES

With the conclusion of the course project, a summary of the expected
and actual number of hours invested in each project task are shown
in Table 3. Overall timeline conformance was around anticipated,
with minor slippage on a few tasks due to illness and other course
responsibilities, however no major issues were encountered.
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