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Fig. 1. Our current implementation.

1 INTRODUCTION

DNA nanotechnologies have been extensively studied owing to po-
tential applications such as DNA beacons [7] and artificial neural net-
works [5]. DNA reaction mechanisms, however, are still not well
understood. There is an immediate need to have reliable solutions to
help synthetic biologists and molecular programmers better understand
the mechanism of reactions of interest, so that further to help design
novel nucleic acid reactions with more promising applications.

It turns out that visualizing reaction energy landscapes and trajec-
tories provides a meaningful way to study reaction mechanisms. An
energy landscape is comprised with a set of secondary structures vis-
ited in the sampled trajectories. A reaction trajectory is depicted as a
sequence of secondary structures from the reactants to the products of
a DNA reaction, along with the reaction time to transition from one
secondary structure to the next. A secondary structure describes a set
of strands with their base pairs (bp) formed via hydrogen bonding in
terms of Watson-Crick and/or Wobble base pair rules, and each sec-
ondary structure has an associated free energy that is determined by
underlying thermodynamic parameters. The DNA reaction process is
stochastic so that reaction trajectories could be modelled based on the
continuous-time Markov chain, by which each transition between states
(secondary structures) in a trajectory shows an elementary step with a
single base pair forming or breaking.

There are some previously-published visualization methods for en-
ergy landscapes and reaction trajectories. Schaeffer et al. [6] designed
the Multistrand simulator to output secondary structures with the dot-
parenthesis (dp) notation, and a sequence of such secondary structures
from the initial to finial structures represent a trajectory. However, this
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way is constrained by only showing one single trajectory and does not
allow situating the trajectory on the energy landscape. Machineck et
al. [4] used a coarse-grained method to show energy landscapes and lay
out the reaction trajectories on the landscapes, while the interpretation
of the coarse-grained plots is difficult due to the lack of explicit state
information. Flamm et al. [3] used barrier trees to visualize energy land-
scapes and Castro et al. [2] proposed a deep graph embedding model
to map secondary structures into low-dimensional space to uncover
the energy landscape. However, both of the two approaches do not
address showcasing reaction trajectories on such landscapes. Accord-
ingly, having a well-designed visualization tool for energy landscapes
and trajectory plots is imminent.

This project is an extension of my RPE project, for which I designed
an visualization tool based on a deep graph embedding approach to
map high-dimensional DNA secondary structures into low-dimensional
space to show energy landscapes, and then lay out different trajectories
on the landscape. Although there was a tooltip design for displaying
secondary structures and their corresponding information, this tool is
limited for explicit comparison of different states and trajectories, and
it does not integrate reaction time into the plots. Moreover, my RPE
has not addressed a suitable way to quantitatively evaluate the graph
embedding.

To tackle these limitations, the purpose of the course project is to
design a user-friendly interactive visualization tool, that we named
i-ViDa, in the shape of a website, to allow users to manipulate the
visualization of energy landscapes and trajectories of interest. We
expected that by using our designed tool, users can easily address these
questions:

• Which trajectories are the most important ones for the reaction?
In other word, which trajectories are dominant in the reaction?

• How many significant reaction pathways are existing from the



initial to final states for the reaction?

• For a specific trajectory, how is the total reaction time related to
the transition steps?

• For a specific trajectory, how do the state energy change over the
transition steps and times?

• Can users identify the traps or barriers for the reaction, and what
are the states’ information for these traps?

• What are important states read from the visualization? Specifi-
cally, what states have the most reaction trajectories passed by?
Additionally, what are some likely trajectories that start from a
certain state?

Answering the above questions can help evaluate the visualization
tool. We will concretely describe these questions in Section 3.2.

Additionally, in this project we also plan to design a “distance”
metric to precisely evaluate the graph embedding approach. Although
using the interactive visualization tool we can qualitatively assess the
embedding approach and implement a set of analyses based on the
input embedding datasets, we would like to have a more accurate way
to quantify the embedding model. Specifically, we would like to find a
reasonable metric that can measure the preservation of local and global
structure, thereby inferring the performance of the embedding.

2 RELATED WORK

2.1 ViDa
This course project builds on a visualization model, ViDa, proposed in
my RPE project. ViDa is a new approach to visualize energy landscapes
and trajectory plots in light of a deep graph embedding approach. The
framework of ViDa is shown in Figure 2, which consists of five major
parts: the Multistrand simulator that is to produce secondary struc-
ture and trajectory information, the convertor that converts secondary
structures represented by dp notations to adjacency matrices, a deep
embedding model called GSAE, an additional dimensionality reduction
technique such as PCA and PHATE, and an interactive plotting tool
that has a tooltip feature using Plotly in Python. The input of ViDa is
a reaction with a sequence and initial and final secondary structures,
and the output is a visualization plot. ViDa has been demonstrated to
embed high-dimensional secondary structures into low-dimensional
Euclidean space to display energy landscapes and to lay out meaningful
trajectories in the landscapes. Using ViDa users can easily retrieve
the state information such as secondary structures, energies, reaction
times, hairpin information, and so on, from the energy landscape. How-
ever, due to the limitation of the interactive plotting tool, it is not very
straightforward to compare different trajectories of a reaction and find
potential states that may affect the reaction process. Additionally, ki-
netic traps’ information is restricted by ViDa. Although ViDa shows
time information in the tooltip, it does not allow time as a variable while
plotting. Therefore, in the course project we plan to improve ViDa
to enable a more comprehensive and accurate analysis of simulated
reaction trajectories and energy landscapes, further to well understand
reaction mechanisms.

3 DATA AND TASK ABSTRACTION

In this section, we introduce the data abstraction and task abstraction.
The datasets we used for this project were generated from my RPE
project and converted to particular formats for further encode.

3.1 Data Abstraction
Currently, there are two reactions of interest, each of which has two
tables, as shown in Table 1 and 2. (In the future we may have more
datasets for different types of reactions of interest, but the data type and
dataset type are the same as the following.)

We denote our dataset as:

S = {S1, ...,S46606}
T = {T1, ...,T100}

(1)

For an arbitrary trajectory Ti of length m, i.e., Ti has m reaction steps:

Ti = {Ii,Ri}
Ii = [Ii1, ..., Ii j, ..., Iim]

Ri = [Ri1, ...,Ri j, ...,Rim]

(2)

where Ii,Ri are ordered lists of indices and time of the states in trajectory
Ti, respectively.

In one specific reaction, the first table has 46606 items and ten
attributes including the secondary structure represented by the dot-
parenthesis notation, the coordinate, the energy, the average reaction
time (simulation time, not the real wall-clock time) of each item, the
occupancy density of each secondary structure, i.e. how many different
trajectories pass through this structure over the total trajectories. For a
state S j, the occupancy density of S j , d(S j), is expressed as:

d(S j) =
100

∑
i=0

b(S j, i)

b(S j, i) =

{
1, i f ID(S j) ∈ Ii

0, otherwise,

(3)

and five secondary structure-related information. Specifically, these five
attributes include the size of hairpin structures formed in each of the
strands, i.e. the number of intra-strand base pairs in each complemen-
tary strands, the number of correctly bound inter-strand base pairs, the
total number of inter-strand base pairs, and a label indicating whether
the complementary strands possess at least one inter-strand base pair,
namely, label “0” refers to two strands separated (disconnected) and
label “1” refers to two strands bound (connected).

The other table has 100 items and four attributes. Each item refers
to a trajectory. One attribute is the index which is made up of a list.
The element of the list refers to the index of each item in the first table.
Using the indices from the list to retrieve the items, we can get a series
of secondary structures and their corresponding dot-parenthesis nota-
tions, coordinates, and energies in a trajectory for further visualization.
The second attribute is the transition time, which is different from the
average reaction time in the previous table. Because the DNA reaction
is stochastic, every simulated trajectory consists of different states and
the transition time from one state to the next is not deterministic. The
average reaction time of each state is calculated by averaging all tran-
sition times of that state in the reaction. The third and forth attributes
are the reduced trajectory indices and cumulative transition times of
the states that are remained after filtering. There are some trajectories
are extremely long. How can we find a meaningful way to reduce the
length of the trajectory but still preserves its essential information? To
solve this problem, we conceive a high-density pass filter to filter out
the states with low occupancy densities in a trajectory, while the rest of
states with high occupancy densities are preserved and the cumulative
reaction time for each of them were recorded. By means of this filter,
we can significantly reduce the number of states in a trajectory, for the
purpose of the arc diagram design.

Table 1. Data abstraction for secondary structure information.

Attribute Type Range
ID categorical [1, 46606]
DP notation categorical N/A
Coordinate X quantitative [-9.7, 13.3]
Coordinate Y quantitative [-6.7, 12.9]
Energy quantitative [-39.47, 10.87]
Average time quantitative [0, 3.60 e-8]
Occupancy density ordinal [1, 100]
Intra-strand bp (left) quantitative [0, 12]
Intra-strand bp (right) quantitative [0, 12]
Corrected inter-strand bp quantitative [0, 25]
Total inter-strand bp quantitative [0, 25]
Binding categorical {0, 1}



Fig. 2. The framework of ViDa. The scattering transform and semi-VAE make up the GSAE model. ŷ is the predicted energy by the regressor network
and y is the real energy produced by the simulator.

Table 2. Data abstraction for trajectory information.

Trajectory Type Cardinality
Index quantitative [104, 54762]
Time quantitative [104, 54762]
Reduced index quantitative [TBD, ∼ 100]
Cumulative time quantitative [TBD, ∼ 100]

3.2 Task Abstraction
3.2.1 Who
The fellow tool builders will be me and my partner. The gatekeeper
will be my supervisor, Anne, and the front-line analysts will be the
domain expert, Erik, who works on DNA computing students, who yet
have not been determined.

3.2.2 Action and Target
We present our task abstractions by introducing three levels (analyze,
search, and query) of actions and targets in separated spaces which
includes the trajectory space and the state space. Each space repre-
sents one of the two datasets discussed in the data abstraction section,
respectively.

Trajectory-space-related Tasks In analyze level, we expect the
users to be able to:

(i) present any trajectory on 2D.

(ii) discover correlations and features of trajectories. In lower-level,
the users can answer questions such as:

• Do the total time and steps of trajectories correlate?
• Do the total time/steps and spatial shape on reduced dimen-

sion correlate?

(iii) present the energy flow of trajectories.

(iv) present the occupancy density flow of trajectories.

(v) derive the approximate number of reaction traps in trajectories
visually.

In search level, the users can:

(vi) look up/explore trajectories with various features. Features of
interest might include long/short of reaction time/steps.

In query level, the users can:

(vii) identify reaction traps of trajectories via a visual, topological or
statistical method.

(viii) compare features of trajectories. In lower-lever, the following
questions might be interesting to users.

• Do trajectories with similar time/steps have similar en-
ergy/occupancy density flow?

• Do rare/common reaction trajectories differs in reaction
time/steps? We define the rareness of trajectory Ti of length
m, r(Ti) as:

r(Ti) =
∑

m
j=0 density(SIi j )

m
(4)

i.e., the more states of higher occupancy density that Ti
contains, the more common Ti is.

• Do trajectories that follow similar spatial shapes in 2D
Euclidean space have similar energy flows/typologies?

(ix) summarize all trajectories’ energy flow, occupancy density flow,
or occupancy density distribution.

State-space-related tasks In analyze level, our visualization
helps the users to:

(x) present states on 2D.

(xi) discover the state distribution over energy, time, and some special
structures.

(xii) present secondary structure of states.

(xiii) drive state coverage rates of trajectories with states of given den-
sity. We define the coverage rate of a trajectory with given density
is the number of states with higher/equal given density divided
by the total number of states in the trajectory. For trajectory
Ti = {Ii,Ri} of m steps in total, i.e., |Ii|= m, the coverage rate of
Ti with a density threshold k, d(Ti,k) is:

d(Ti,k) =
∑

m
j=0 f (SIi j ,k)

m

f (SIi j ,k) =

{
1, i f density(SIi j )≥ k
0, otherwise.

(5)

In lower-level, the users might question: what is a reasonable
threshold for filtering states with higher occupancy densities to
cover the most of steps of a long trajectory? This is also a task
relates to trajectory-space.

In search level, the users can:

(xiv) look up/explore states with various features. Features of interest
might include: high/low energy, reaction time and occupancy
density; type/number of links in the secondary structure.

In query level, the users can:



(xv) compare features of states. In lower-level, our tool answers the
following questions:

• Do states with similar reaction time/energy have similar
structures?

• Do states with higher densities have special structures com-
pared to rare states?

• Do states with certain structures cause the kinetic traps?

4 SOLUTION

4.1 Implementation
We use D3.js as our framework for this project [1]. There is no pre-
existing software were dependent.

4.2 Scenario
We propose our potential solutions by introducing scenarios of use
aligned with each corresponding task discussed in Section 3.2.

Fig. 3. Potential solution for overview-view design

Fig. 4. Potential solution for compare-view and utility-view design

For each scenario aligned with each tasks discussed above, to per-
form the tasks, the users can:

(i) click any line mark on the large bar chart to encode a trajectory, in
which the spatial shape in 2D on the large scatter plot is presented
for the selected trajectory.

(ii) select multiple trajectories with different/similar time/steps on
the bar chart and view their spatial shapes on the large scatter
plot. The users can view correlation between time and steps in
the small scatter plot. The users can also view overall ranking
of the selections in the small bar chart, which is a redundant
visualization of the large bar chart but contains all trajectories in
one window.

(iii) click any line mark on the bar chart and view the energy flow on
the line chart.

(iv) click any line mark on the bar chart and view the density flow on
the line chart.

(v) click any line mark on the bar chart to select a typical trajectory,
and visually count the number of clusters of dense line segments
in this selection.

(vi) display the bar chart with a selected attribute (time or steps) by
clicking the button on the top right of the large bar chart. The
users can also sort the trajectories based on the selected time or
steps.

(vii) visually locate dense clusters of line segments in the large scatter
plot. Topologically, the users can look up dense arcs segments
in the arc diagram Figure 4. Statistically, the users can identify
whether a trap exists in terms of whether a flat portion in a energy
flow curve exists, as shown in Figure 4.

(viii) click line marks on the bar chart to select trajectories for compari-
son. The users can judge the differences of marks in the energy
flow. Recall that trajectories with more states of higher occupancy
densities are common trajectories and vice versa, the users can
show density distribution of trajectories by clicking the button on
the large bar chart. The hexbin chart encodes all data in a coarse
level, and it is also a redundant visualization of the large scatter
plot. The users can use the hexbin chart to view the spatial shapes
of trajectories without dense line segment crossings.

(ix) click the option button on the large bar chart to enable line marks
to show attributes required in the task. Another solution is to
construct a matrix of colormap for all trajectories.

(x) view the large scatter plot.

(xi) use the zoomed window in the large scatter plot. Since our data is
generated in a way that states with similar structures are closed
together in 2D, states that fall inside a smaller selected window
intend to have more similar structures. The users can also click
on any bin inside a hexbin chart to view distribution because
states falls inside a bin also have similar structures with similar
reasoning.

(xii) click any point mark in the large scatter plot and view its actual
secondary structure in the visualization component on the right
bottom corner in Figure 4.

(xiii) use the slider on the large scatter plot to manipulate the filtering of
states. Trajectories with filtered states will have less information
compared to the original ones.

(xiv) use the zooming function in the large scatter plot to view inter-
ested features.

(xv) perform this task similarly as task (xi) and combine with task
(xii).

5 MILESTONES

• Preliminary work, Sep.21 - Sep.30

– (3 hours, both) introduce project background knowledge
introduction, dataset discussion, visualization methods dis-
cussion

– (3 hours, both) project pitch preparation

– (5 hours, Chenwei) generate and translate datasets into
certain formats

• Project proposal, Oct.1 - Oct.21

– (6 hours, both) discuss all possible project tasks

– (5 hours, both) discuss potential designed prototypes

– (3 hours, Chenwei) connect with domain experts to discuss
the proposal

• Implementation before update report, Oct.24 - Nov.15



– (3 hours, Chenwei) provide ideas and layout for the interac-
tive tool design

– (5 hours, Yibo) complete interaction functionality of
overview-view

– (3 hours, Yibo) complete basic functionality of hexbin chart

– (6 hours, Yibo) complete basic functionality of arc diagram

– (3 hours, Yibo) complete basic functionality of flow chart

– (2 hours, both) finalize interaction activities to implement

– (10 hours, Yibo) complete interaction functionality of flow
chart

– (5 hours, Chenwei) give feedback to Yibo’s design and
discussion

– (10 hours, Chenwei) read some evaluation papers for em-
bedding approaches and get insights from them

• Implementation deadline, Nov.15 - Dec.7

– (3 hours, both) discuss feedback from peer-review, finalize
required functionality

– (10 hours, Yibo) complete all functionality of all views.

– (5 hours, both) discuss styling choices.

– (10 hours, Yibo) styling, debugging, deploying the final
version of implementation

– (10 hours, Chenwei) Design the meaningful evaluation met-
ric to quantify the embedding data

• Finalization, Dec.7 - Dec.16

– (10 hours, both) prepare the final presentation

– (20 hours, both) document all results and write the final
report

6 DISCUSSION

7 FUTURE WORK

8 CONCLUSION
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