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 Introduction 

 As  the  fundamental  unit  of  life,  cells  are  dynamic  biological  entities  in  which  molecular  and 
 chemical  processes  are  occurring  in  a  constant  state  of  flux.  The  amount  of  information 
 packed  into  every  single  cell  in  the  human  body  is  incomprehensible.  With  approximately  3.2 
 billion  nucleotides  (i.e.,  DNA  bases  –  {A,  C,  G,  T})  in  the  genome,  a  cell’s  DNA  is  estimated 
 to  encode  for  somewhere  between  20,000  and  25,000  genes.  Each  gene  can  be  transcribed 
 into  an  intermediate  state  made  up  of  ribonucleotides  (RNA),  which  can  in  turn  be  translated 
 into  proteins  (Buccitelli  et  al.,  2020).  While  DNA  and  RNA  are  typically  considered  inert 
 forms  of  information,  protein  molecules  are  largely  responsible  for  governing  the  functionality 
 of  a  cell,  and  recent  estimates  suggest  that  a  cell  can  contain  as  many  as  42  million  proteins 
 at a given point in time. 

 This  flow  of  information,  from  DNA  to  RNA  to  protein,  describes  what  is  referred  to  as  the 
 central  dogma  of  biology,  and  the  many  levels  and  mechanisms  of  regulation  that  can  occur 
 along  this  flow  result  in  a  magnitude  of  complexity  that  the  human  brain  cannot  begin  to 
 grasp.  Despite  such  challenges,  there  have  been  countless  large-scale  efforts  to 
 characterize  the  different  levels  (or  modalities)  of  information  within  each  cell.  This  is 
 because  having  a  deeper  understanding  of  complex  biological  systems  at  their  most  basic 
 unit  (i.e.,  the  cell)  can  facilitate  novel  insights  into  cellular  processes  that  can  potentially  lead 
 to innovations in medical and biological sciences. 

 Juxtaposed  by  the  abundance  of  information  that  is  present  in  each  cell  is  their  microscopic 
 nature,  which  presents  numerous  challenges  in  quantitatively  measuring  different  aspects  of 
 a  cell.  However,  with  the  rapid  advancement  of  sequencing  technologies  over  the  past  two 
 decades,  large-scale  and  affordable  DNA  and  RNA  sequencing  experiments  have  become 
 widely  accessible.  As  such,  sequencing  of  a  cell’s  genetic  information  has  emerged  as  one 
 of  the  most  powerful  methods  for  studying  cell  biology.  In  particular,  cells  are  often  quantified 
 in  terms  of  their  gene  expression  profiles,  where  “expression”  refers  to  the  process  by  which 
 a  gene  is  transcribed  from  genomic  DNA  into  an  RNA  molecule  (which  can  be  later 
 translated  into  a  protein).  By  measuring  the  abundance  of  RNA  molecules  of  all  of  the  genes 
 within  each  cell  (referred  to  as  single-cell  RNA  sequencing,  or  scRNA-seq),  we  effectively 
 gain  a  “snapshot”  of  the  state  of  each  cell  in  terms  of  their  respective  gene  expression 
 profiles,  which  can  allow  inferences  to  be  made  about  the  biological  system  of  interest.  One 
 common  use  case  of  scRNA-seq  information  is  to  use  each  cell’s  gene  expression  profile  as 
 a  basis  for  determining  the  type  of  the  cell,  where  the  rationale  for  such  a  labelling  task  is 
 that  differences  in  cell  effector  function  should  be  reflected  by  corresponding  differences  in 
 gene expression. 



 Recent  advancements  have  extended  scRNA-seq  technologies  to  also  permit  the 
 simultaneous  quantification  of  a  cell’s  gene  expression  with  either  DNA  or  protein 
 information.  Termed  “multimodal”  sequencing  experiments,  the  ability  to  quantify  a  cell  in 
 terms  of  multiple  layers  of  information  (DNA:RNA  or  RNA:protein)  offers  a  lot  of  promise 
 from  the  standpoint  of  understanding  how  the  different  layers  of  information  work  together  to 
 shape  a  cell’s  overall  function.  However,  this  also  presents  many  challenges  from  an 
 analytical  standpoint,  as  the  complexity  and  number  of  attributes  can  increase  substantially. 
 Note  that  to  our  knowledge,  there  are  no  current  technologies  that  are  able  to  simultaneously 
 and  efficiently  capture  all  three  layers  of  information  (DNA,  RNA  and  protein)  at  single-cell 
 resolution. 

 While  visualization  has  been  an  extremely  powerful  tool  in  guiding  the  analysis  and 
 interpretation  of  gene  expression  information  from  scRNA-seq  experiments,  its  application  in 
 the  context  of  multimodal  datasets  is  in  its  infancy  (Hao  et  al.,  2021).  As  such,  our  project 
 aims  to  conduct  an  analysis  on  the  visualisation  softwares  that  can  be  applied  to  these 
 multimodal  datasets.  In  particular,  we  will  analyze  the  effectiveness  of  existing  software  tools 
 for  the  task  of  cell  type  labelling  on  a  multimodal  dataset  that  consists  of  RNA:protein 
 information modalities at multiple time points. 

 Our  group  has  some  degree  of  familiarity  with  scRNA-seq  analysis  using  field-standard 
 visualization  tools  such  as  Seurat  (  Hao  et  al.,  2021  )  and  Scanpy  (  Wolf  et  al.,  2018  ).  BK 
 commonly  works  with  sequencing  datasets  for  his  primary  thesis  project.  KM  has  analyzed 
 his own datasets generated during the summer of 2022. 

 Related Work 
 Recent years have seen an ever growing amount of scRNAseq papers include multimodal 
 analysis, most clearly seen with multimodal scRNAseq being named Nature’s method of the 
 year in 2019. Further, one of the first examples of a multimodal technique, CITEseq 
 (Stoeckius et al., 2017) has received >1500 citations since its publication only a few years 
 ago. As adoption of this technique grows, so too does the need for a set of visualization tools 
 capable of integrating the various modalities of information. 

 Integration of multimodal data into scRNAseq analysis has progressed alongside the 
 technology required to obtain it. The two most common scRNAseq analysis and visualization 
 suites, Scanpy for python and Seurat for R, have only recently released packages enabling 
 this analysis (Hao et al., 2021, Bredikhin et al., 2022). Additional packages and tools have 
 been developed outside of Scanpy and Seurat for multimodal analysis, however they have 
 seen limited use due to their lack of integration with established pipelines (Forcato et al., 
 2021). To date, there have been no comprehensive comparisons between these tools - given 
 the novelty of multimodal scRNAseq analysis and visualization, and proper comparison is 
 imperative. 

 At the core of most of these tools is the utilisation of non-linear dimensionality reduction (DR) 
 techniques, most commonly t-Distributed Stochastic Neighbor Embedding (t-SNE) and 
 Uniform Manifold Approximation and Projection (UMAP) (van der Maaten and Hinton, 2008; 
 McInnes et al., 2018). Using DR, single cell experiments are often represented as a 2D 
 scatterplot, with each cell’s data (count data on up to as many as 20000 genes) as a point, 



 with more similar cells clustering together as a result of DR. After building these DR plots, 
 the other modalities (non-RNA data) are often overlaid, providing additional insight. 

 DR via t-SNE and UMAP has seen significant usage outside of scRNAseq data analysis. 
 The clearest demonstration of the versatility of these tools is seen in their original 
 publications and their application to face image datasets (Olivetti faces), object datasets 
 (COIL-20), handwriting image datasets (MNIST), word/phrase datasets (Google News Word 
 Vectors), and a variety of biological datasets (flow cytometry and scRNAseq). 

 Data and Task Abstraction 

 Data 
 We  will  be  exploring  a  Kaggle  dataset  that  follows  the  developmental  process  of  bone 
 marrow  stem  cells  (mobilized  peripheral  CD34+  hematopoietic  stem  and  progenitor  cells)  as 
 they  differentiate  into  various  types  of  mature  blood  cells  (Velten  et  al.,  2017).  Cells  were 
 sampled  from  4  healthy  human  donors  (Day  1),  and  then  measurements  from  these  sampled 
 cells  were  taken  at  5  time  points  over  a  10-day  period  (Days  2,  3,  4,  7  and  10).  The  dataset 
 is comprised of information from two multimodal sequencing technologies: 

 10x  Genomics  Single  Cell  Gene  Expression  with  Feature  Barcoding  technology  (CITEseq)  : 
 measures  gene  expression  (RNA)  and  surface  protein  levels  for  each  cell.  RNA  gene 
 expression  levels  representing  the  abundance  of  RNA  molecules  for  each  gene  are  provided 
 as  the  first  modality  of  information  for  each  cell,  where  the  data  have  undergone  a  global 
 (library-size)  normalization  and  log1p  transformation.  This  information  is  paired  with  cell 
 surface  protein  levels  that  have  undergone  a  denoised  and  scaled  by  background  (dsb) 
 normalization.  Note  that  there  are  only  140  surface  level  proteins  that  are  captured  with  this 
 CITEseq  technology,  but  the  included  proteins  are  known  to  be  involved  in  important 
 developmental processes in  bone marrow stem cells. 

 Also  provided  in  the  dataset  are  cell  type  labels  that  were  inferred  based  on  RNA  expression 
 information  using  a  method  established  in  a  previous  paper.  Each  cell  is  labelled  as  one  of 
 the following cell types: 

 ●  Mast Cell Progenitor (MasP) 
 ●  Megakaryocyte Progenitor (MkP) 
 ●  Neutrophil Progenitor (NeuP) 
 ●  Monocyte Progenitor (MoP) 
 ●  Erythrocyte Progenitor EryP) 
 ●  Hematopoietic Stem Cell (HSC) 
 ●  B-Cell Progenitor (BP) 

 Data Abstraction 
 The  RNA  expression  data  is  provided  as  a  flat  table  with  70,988  items  and  22,050  attributes. 
 Each  cell  acts  as  a  key  to  a  particular  item  (row  in  the  table),  with  a  number  of  value 
 attributes  that  represent  different  genes.  Notably,  the  value  for  each  item-attribute  pair  is  a 
 quantitative  value  representing  the  normalized  RNA  expression  counts.  Thus,  each  attribute 
 encodes quantitative information. 



 In  addition,  there  is  a  metadata  table,  which  includes  281,528  items  and  5  attributes.  The 
 attribute (with its type) can be stratified as follows: 

 ●  cell_id  (categorical  type):  a  unique  identifying  alphanumeric  string  that  is  assigned  to 
 each cell in the dataset. 

 ●  day  (sequentially  ordered  quantitative  type):  represents  the  time  point  at  which 
 sequencing measurements were taken. 

 ●  donor  (categorical  type):  a  unique  identifying  number  that  is  assigned  to  the  4  healthy 
 adult donors. 

 ●  cell_type (categorical type): the inferred cell type label for each cell. 
 ●  technology  (categorical  type):  the  sequencing  technology  used  (note  that  our  project 

 is focused on the CITEseq technology). 

 Such  metadata  can  be  mapped  to  the  multimodal  information  by  the  cell_id  attribute,  which 
 permits  stratification  of  the  data  based  on  the  remaining  4  attributes.  Consequently,  the 
 dataset  also  consists  of  a  time-varying  semantic.  This  is  shown  in  the  Figure  1  bar  chart  that 
 depicts the number of cells included in the dataset when categorized by cell type and day. 

 Figure 1: cell counts by cell type and day. 

 Task 
 Our  project  aims  to  evaluate  the  task  of  assigning  a  label  to  each  cell.  Cell  type  annotation  is 
 a  highly  disputed  topic,  due  to  the  inherent  limitations  of  assigning  a  discrete  label  onto 
 continuous  data  that  is  derived  from  a  dynamic  biological  entity.  Conventionally,  cell  type 
 labelling  is  performed  by  considering  only  a  small  subset  of  genes  that  are  “known  markers” 
 for  pre-defined  cell  types  (i.e.,  certain  cell  types  can  be  characterized  by  the  expression  of 
 specific  genes,  and  those  specific  genes  can  be  denoted  as  “markers”),  and  labels  are 
 assigned  to  cells  based  on  similarities  in  gene  expression  relative  to  those  known  marker 
 genes.  However,  such  a  labelling  paradigm  has  major  flaws  in  that  it  does  not  consider  all 
 available  gene  expression  information  (additionally,  it  typically  only  considers  a  single 
 modality  of  information,  in  RNA),  it  does  not  account  for  temporal  change  in  gene  expression 
 patterns,  and  it’s  restricted  to  labelling  cells  based  on  known  cell  types  (i.e.,  you  can  never 
 identify new cell types). 

 This  dataset  presents  an  opportunity  to  not  only  evaluate  existing  cell  type  labelling 
 strategies,  but  also  to  investigate  strategies  that  consider  multiple  modalities  of  information 



 (RNA  and  protein)  and  how  they  can  vary  over  time.  In  particular,  we  will  analyze  how 
 existing  software  tools  can  influence  the  interpretations  of  cell  type  labels,  and  whether  those 
 interpretations  are  subject  to  change  depending  on  the  type  of  information  (RNA,  protein,  or 
 both) and the time at which the measurement was taken. 

 Task Abstraction 
 With  respect  to  the  three  levels  of  actions  that  tasks  can  be  abstracted  to,  the  highest-level 
 action  (Analyze)  of  cell  type  labelling  would  be  to  consume  the  cell-specific  information  in  the 
 multimodal  dataset,  as  it  is  not  well-understood.  In  doing  so,  we  aim  to  discover  new  insights 
 that  can  allow  us  to  formally  evaluate  the  effectiveness  of  existing  software  tools  for  our  task 
 of  cell  type  labelling.  The  mid-level  goal  (search)  will  entail  exploring  characteristics  of 
 individual  cells  with  no  prior  notions  of  their  respective  locations.  These  locations  may 
 manifest  as  relative  outliers  in  a  scatterplot  with  respect  to  the  rest  of  the  cell  population  or 
 patterns  in  time-series  variation  plots.  At  the  lowest-level  user  goal  (query),  we  will  attempt  to 
 summarize  this  cell  type  labelling  task  with  respect  to  every  cell  in  the  population.  It  is 
 necessary  to  consider  all  cells  in  a  population  because  the  cells  can  only  be  compared 
 relative  to  other  cells  in  the  population,  which  is  particularly  important  when  identifying 
 potential  rare  cell  types  (i.e.,  if  a  very  small  subset  of  cells  are  distant  from  the  rest  of  the 
 population). 

 In  terms  of  the  four  kinds  of  abstract  targets,  our  task  will  involve  looking  for  trends  amongst 
 all  of  the  data,  as  well  as  potentially  topological  patterns  in  network  data.  More  specifically, 
 we  hypothesize  that  certain  visualization  idioms  may  delineate  populations  of  cells  with 
 higher  resolution  than  others  when  evaluating  trends  such  as  clusters.  For  example,  while 
 the  provided  cell  type  labels  include  only  8  cell  types,  we  expect  some  methods  may  identify 
 many  more  cell  types  (e.g.,  30  different  labels).  With  respect  to  network  data,  understanding 
 the  topology  of  protein  interaction  networks  could  also  provide  insights  into  possible 
 sub-populations of cells. 

 As  for  the  actual  design  of  vis  idioms,  the  high  number  of  attributes  will  likely  necessitate  the 
 utilization  of  multiple  families  of  design  idioms.  Reducing,  through  filtering,  aggregation  and 
 dimensionality  reduction  will  all  be  employed  throughout  the  analysis  project  as  those  form 
 the  basis  of  many  existing  software  tools.  In  addition,  juxtaposition  and  superimposition  in 
 the  faceting  family,  and  color/size/shape  from  the  map  family  will  also  be  incorporated  into 
 our analysis of visualization idioms. 

 Methods and Tools 

 This  dataset  has  not  been  previously  analyzed  by  BK  or  KM.  For  our  project,  one  of  the 
 major  themes  for  the  visual  analysis  idioms  that  were  selected  was  the  ability  to  handle 
 large-scale,  complex  datasets.  Given  that  the  continual  improvement  in  sequencing 
 technologies  will  facilitate  increasingly  large-scale  multimodal  experiments,  there  is  a 
 growing  need  to  analyze  the  existing  visualization  software  tools  in  the  context  of  large-scale 
 datasets.  The  reason  why  manipulation  and  other  interactive  visual  data  analysis  idioms  will 
 not  be  considered  for  this  project  is  that  the  lack  of  adoption  of  interactivity  in  the  scientific 
 community  has  resulted  in  relatively  few  software  tools  for  the  interactive  analysis  of 
 multimodal sequencing datasets. 



 One  of  the  major  visual  idioms  will  be  scatterplots  matrices,  particularly  ones  that  visualize 
 data  that  has  undergone  some  form  of  visual  data  analysis  idiom  such  as  dimensionality 
 reduction  (PCA  and/or  UMAP).  With  only  5  time  points  and  8  cell  types  to  consider,  these 
 attributes  are  few  enough  in  number  to  allow  for  the  effective  juxtaposition  as  rows  and 
 columns  in  a  matrix,  respectively.  Moreover,  such  dimensionality  reduction  methods  will  be 
 able to capture all of the data with respect to each time-cell-type pair. 

 Another  visual  data  analysis  idiom  that  will  be  heavily  used  is  aggregation.  With 
 approximately  20,000  cells  at  each  time  point,  an  effective  approach  for  reduction  may  be  to 
 aggregate  information  across  cells  with  respect  to  cell  type  labels.  This  can  simplify  the 
 comparisons across different cell types by reducing the density of information in the plots. 

 Color  and  superimposition  will  also  be  utilized  to  highlight  specific  trends  that  cell  types  may 
 have  with  respect  to  the  entire  population  of  cells.  In  certain  cases,  ordering  and  filtering  may 
 also  be  applied  to  focus  on  specific  subsets  of  genes  (e.g.,  only  consider  genes  with  the 
 highest RNA expression level in a particular analysis). 

 The  primary  tools  that  will  be  used  for  our  analysis  are  Seurat  and  Scanpy.  These  are  two  of 
 the  most  popular  frameworks  for  the  analysis  of  single-cell  sequencing  information,  making 
 them  clear  choices  for  our  analysis  on  existing  visualization  tools.  While  Seurat/Scanpy  will 
 be  used  in  tandem  to  produce  a  majority  of  the  visualizations,  we  will  also  be  evaluating 
 “stand-alone”  softwares  for  any  remaining  visual  idioms  that  are  not  supported  by  either 
 Seurat/Scanpy. 

 Cytoscape  is  on  such  software  that  will  be  utilized  to  construct  protein  network  visual  idioms, 
 as  it  has  been  shown  to  be  an  extremely  powerful  tool  that  can  produce  large-scale  network 
 visualizations of protein and gene expression data. 

 Note  that  further  stand-alone  tools  will  be  determined  in  the  Milestones  leading  up  to  the  final 
 presentation. 

 Analysis 

 Initially,  we  sought  to  characterize  the  entire  population  of  cells  in  terms  of  their  gene 
 expression profiles when juxtaposed by day (rows) and cell type label (column). 

 Figure  2  depicts  a  scatterplot  matrix  where  the  quantitative  gene  expression  tables  have 
 undergone  dimensionality  reduction  with  PCA,  followed  by  manifold  learning  with  UMAP.  The 
 color  channel  is  also  used  alongside  superimposition  to  highlight  the  respective  cell  types 
 against the entire population. 



 Figure  2  .  UMAP  scatterplot  matrix  of  gene  expression  profiles  juxtaposed  by  day  (rows)  and 
 cell type (columns) 

 Figure  3  depicts  a  similar  UMAP  scatterplot  matrix  for  the  surface  level  protein  levels  of  each 
 cell, which shows similar overall trends when compared to the gene expression profile. 

 Figure 3  . UMAP scatterplot matrix of surface protein  levels juxtaposed by day (row) and cell 
 type (columns) 

 From  the  above  UMAP  scatterplot  matrices  (Figure  2  and  3),  we  can  observe  the  entire 
 population  of  cells  for  each  day-cell  type  pairing.  In  particular,  we  can  see  how  at  day  2, 
 there  is  little  separation  across  the  different  cell  types,  which  suggests  that  their  gene 
 expression  profile  and  protein  levels  are  quite  similar.  However,  for  the  measurements  taken 
 at  day  3  and  4,  we  can  see  a  modest  degree  of  separation  between  cell  types  progressively 
 emerge. 

 The  B-cell  progenitor  (BP)  cells  were  quite  scarce  and  scattered  throughout  the  population  of 
 cells,  especially  in  terms  of  surface  protein  levels.  Overall,  the  other  cell  types  appear  to 
 have  a  more  clear  delineation  toward  the  latter  two  measurements.  One  observation  that  the 
 superimposition  data  analysis  idiom  enabled  was  that  the  cell  populations  for  each  cell  type 
 appear  more  scattered  in  the  UMAPs  that  were  based  on  surface  protein  levels.  This  may 
 reflect  the  tendency  to  label  cells  solely  based  on  gene  expression  information,  rather  than 
 incorporating additional modalities of information such as protein levels. 



 Following  the  global  analysis  of  all  cells,  a  heatmap  visual  encoding  of  ranked  gene 
 expression  was  provided  in  Figure  4.  This  visual  idiom  involved  ordering  gene  expression 
 levels  for  each  cell  type,  and  filtering  to  include  only  the  top  10  most  differentially  expression 
 genes (i.e., positive or negative). 

 Figure 4.  Heat map of ranked gene expression by cell  type. 

 The  resulting  heat  map  depicts  the  fold  change  of  gene  expression  levels  of  the  top  10 
 differentially  expressed  genes  in  each  cell  type.  Moreover,  a  dendrogram  is  provided  to 
 model  the  hierarchical  relationship  that  each  cell  type  has  based  on  the  selected  genetic 
 profiles.  There  is  a  clear  trend  in  expression  levels  that  can  be  observed  with  respect  to  each 
 cell.  While  encoding  less  information  than  the  UMAP  scatterplot  matrices,  the  above 
 heatmap  still  depicts  a  dense  amount  of  information  for  certain  cells.  However,  this  comes  at 
 the expense of losing consideration for the expression levels for genes not shown. 

 To  get  increasingly  specific,  the  dotplot  below  (Figure  5)  depicts  a  similar  ranking  of  gene 
 expression  levels  as  the  heat  map  above;  however,  by  varying  the  size  of  dots,  there  is  a 
 more  clear  distinction  between  the  relative  magnitude  of  expression  levels  within  each  cell 
 type.  These  latter  two  plots  also  suffer  from  the  inability  to  capture  multiple  time  points 
 (without  explicitly  plotting  each  time  point  independently).  This  reflects  a  general  lack  of 
 support for time-series sequencing datasets. 



 Figure 5. Dotplot of ranked gene expression profiles by cell type 

 One  of  the  main  reasons  this  dataset  was  selected  was  due  to  the  fact  that  there  were 
 multiple  modalities  of  information  capture  on  a  per-cell  basis.  Thus,  in  order  to  characterize  a 
 cell  in  terms  of  both  its  gene  expression  profile  as  well  as  its  surface  protein  levels,  an  initial 
 correlation  scatterplot  matrix  was  constructed  (Figure  6).  In  particular,  for  the  34  RNA:protein 
 pairs  that  were  identified,  there  is  a  modest  correlation  between  the  gene  expression  level 
 and  protein  level.  This  correlation  did  not  appear  to  change  depending  on  the  time  point  at 
 which the measurements took place nor based on the cell type. 

 Figure  6  .  Evaluating  the  correlation  between  gene  expression  levels  and  surface  protein 
 levels for 34 RNA:protein pairs. 
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