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Abstract—The ability to blindly characterize a biological system with single-cell RNA sequencing has revolutionized cell biology. By
capturing RNA molecules and generating count or abundance data per cell, biologists are capable of generating massive datasets,
informing them of cellular states and processes. One challenge now facing the field of single-cell sequencing is how best to analyse
and visualize the abundance of data. Several tools have risen to prominence in the field, but no direct comparison or investigation has
been performed on their ability to perform in the context of visualization. In this body of work, we explore a recently released dataset of
bone marrow stem cells during differentiation, and examine common analysis and visualization tools (Scanpy, Seurat, Monocle3, and
PAGA) in their ability to communicate meaningful biological insights. Ultimately, we highlight gaps in existing visualization idioms used
by these tools through our own analysis and that of others, and propose our own potential solution.

Index Terms—scRNA-seq, Dimensionality Reduction, Transcriptomic time-course analysis, Pseudotime trajectory inference

1 INTRODUCTION AND DOMAIN BACKGROUND

As the fundamental unit of life, cells are dynamic biological entities in
which molecular and chemical processes are occurring in a constant
state of flux. The amount of information packed into every single
cell in the human body is incomprehensible. With approximately 3.2
billion nucleotides (i.e., DNA bases – A, C, G, T) in the genome, a
cell’s DNA is estimated to encode for somewhere between 20,000 and
25,000 genes. Each gene can be transcribed into an intermediate state
made up of ribonucleotides (RNA), which can in turn be translated into
proteins [3]. While DNA and RNA are typically considered inert forms
of information, protein molecules are largely responsible for governing
the functionality of a cell, and recent estimates suggest that a cell can
contain as many as 42 million proteins at a given point in time [6].

This flow of information, from DNA to RNA to protein, describes
what is referred to as the central dogma of biology, and the many levels
and mechanisms of regulation that can occur along this flow result in a
magnitude of complexity that the human brain cannot begin to grasp.
Despite such challenges, there have been countless large-scale efforts
to characterize the different levels (or modalities) of information within
each cell (often referred to as the genome for DNA, transcriptome
for RNA, or proteome for protein). This is because having a deeper
understanding of complex biological systems at their most basic unit
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(i.e., the cell) can facilitate novel insights into cellular processes that
can potentially lead to innovations in medical and biological sciences.

Juxtaposed by the abundance of information that is present in each
cell is their microscopic nature, which presents numerous challenges
in quantitatively measuring different aspects of a cell. However, with
the rapid advancement of sequencing technologies over the past two
decades, large-scale and affordable DNA and RNA sequencing experi-
ments have become widely accessible. As such, sequencing of a cell’s
genetic information has emerged as one of the most powerful methods
for studying cell biology. In particular, cells are often quantified in
terms of their gene expression profiles, where “expression” refers to
the process by which a gene is transcribed from genomic DNA into
an RNA molecule (which can be later translated into a protein). By
measuring the abundance of RNA molecules of all of the genes within
each cell (referred to as single-cell RNA sequencing, or scRNA-seq),
we effectively gain a “snapshot” of the state of each cell in terms of
their respective gene expression profiles, which can allow inferences to
be made about the biological system of interest. One common use case
of scRNA-seq information is to use each cell’s gene expression profile
as a basis for determining the type of the cell, where the rationale for
such a labelling task is that differences in cell effector function should
be reflected by corresponding differences in gene expression.

Recent advancements in experimental costs have enabled researchers
to greatly expand the number of cells included in a given scRNA-
seq experiment. One approach to leverage this is to perform time-
course analysis, where cells are collected at regular intervals during
a biological process such as differentiation, the process where stem
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cells become more mature cells. In such experiments, analysis becomes
focused on understanding the dynamic changes that occur from time
point to time point.

Visualization of scRNA-seq experiments is central to single-cell
analysis and exists as a powerful tool in guiding the interpretation
of gene expression information from scRNA-seq experiments. Given
the vast amount of data generated from such work, researchers often
take an exploratory approach to characterizing cellular states. Initial
exploration and visualization is typically performed using one of two
common packages - Seurat or Scanpy [5, 21]. Both of these packages
contain a variety of tools for plotting and exploring single-cell data, and
have become widely adopted by the community. Given the increasing
commonality of scRNA-seq with and without time course data and the
relative immaturity of the field, we set out to understand the strengths
and limitations of existing and widely adopted visualization tools.

Our own familiarity with scRNA-seq analysis is undeveloped. KM
has a modest amount of experience with running Seurat packages
on data that was generated in-house during his PhD work to date.
BK has some exposure to analysing sequencing datasets, but has not
explored scRNA-seq packages himself. Prior to this project, KM had
not examined the analysed dataset. BK had initially identified the
dataset by hearing about the associated Kaggle competition, but had
not performed any analysis.

2 DATA AND TASK ABSTRACTION

2.1 Data
This analysis project explored a scRNA-seq dataset that was published
on Kaggle, an online community for data scientists and machine learn-
ing enthusiasts focused on exchanging ideas and solving data science
challenges. The dataset was part of an open challenge in 2022 to predict
how DNA, RNA and protein measurements vary in single cells. For our
analysis, we extracted gene expression and protein measurements from
the overall dataset, which follows the developmental process of bone
marrow stem cells (mobilized peripheral CD34+ hematopoietic stem
and progenitor cells) as they differentiate into various types of mature
blood cells. Cells were sampled from 4 healthy human donors at day 1,
and then these cells were allowed to grow and differentiate in a media
for 3 days. A subsample of cells were collected each day (day 2, 3, and
4), which were subsequently characterized by a sequencing technology
to obtain a profile of their gene expression and protein levels.

Cellular Indexing of Transcriptomes and Epitopes by Sequencing
(CITE-seq) [16] was the technology used to quantify the molecular
readouts of individual cells. For the 70,988 cells that were collected
across the 3-day period, information was gathered for 22,050 genes
and 140 proteins. Gene expression levels reflect the abundance of RNA
copies for each gene that have undergone a global normalization and
log1p transformation. Note that the log1p transformation is the natural
logarithm of one plus the RNA count information, where the plus one
ensures that taking the log-transform does not result in an undefined
value. For each cell, this information is paired with cell surface protein
levels that have been subjected to a denoised and scaled by background
(dsb) normalization [12]. The dsb normalization is performed to treat
technical noise that is introduced by the droplet-based sequencing
technology [9] upon which CITE-seq is based.

The organizers of the Kaggle competition also provided a cell type
label for every cell, which was inferred with RNA gene expression
values using a method established in a previous paper [20]. In particular,
each cell was labelled as one of the following mature blood cell types:

• Mast Cell Progenitor (MasP)

• Megakaryocyte Progenitor (MkP)

• Neutrophil Progenitor (NeuP)

• Monocyte Progenitor (MoP)

• Erythrocyte Progenitor EryP)

• Hematopoietic Stem Cell (HSC)

• B-Cell Progenitor (BP)

Any cell that could not be categorized as one of the above cell types
was discarded from analysis. Note that a progenitor cell is a term used
to define a cell that has not fully differentiated into its mature cell type;
however, it is far enough into its differentiation trajectory such that
it has ”committed” to maturing into that target cell type. In contrast,
HSCs are in a multipotent state, meaning that they are still capable of
developing into all types of blood cells.

Fig. 1. Number of cells collected by cell type and day. Left: a grouped bar
chart that depicts the breakdown of the number of cells collected across
the three time points for each cell type. The cell types were ordered by
the total number of cells collected in the 3-day period. Right: a stacked
bar chart that shows the total number of cells collected at each day, with
the color channel used to stratify those total counts by cell type.

Fig. 1 depicts bar plots that provide a breakdown of the number of
cells that are collected across the 3-day period by cell type and day.
Notably, there were very few BP and MoP cells collected and subse-
quently identified in this experiment. At each time point, a majority
of cells were categorized as HSCs, which suggests that a large portion
of the cell population have yet to commit to one mature blood cell
type lineage. The left panel in Fig. 1 does indicate a relative decrease
in HSCs after day 2, which is reflected by an increase in MoP, MasP,
NeuP, and EryP cells at day 3 and 4. Over 20,000 cells were collected
at each time point (Fig. 1).

2.2 Data Abstraction

Table 1. Metadata for molecular readout information.

Attribute Type Range

cell id categorical NA
day ordered quantitative [2,4]

donor categorical N/A
cell type categorical {MasP,MkP,NeuP,

MoP,EryP,HSC,BP}
technology categorical {multiome,citeseq}

The RNA expression data is provided as a flat table with 70,988
items and 22,050 attributes. Each cell acts as a key to a particular
item (row in the table), with a number of value attributes that represent
all of the genes. Notably, the value for each item-attribute pair is a
quantitative value representing the derived expression values following
scaling, normalization and transformation. Thus, each attribute encodes
quantitative information.

The surface protein level data is also provided as a flat table with
70,988 items and 140 attributes. In this case, each cell is an item whose
attributes correspond to the protein levels. The item-attribute pairs are
quantitative values.

In addition, there is a metadata table, which includes 70,988 items
and 5 attributes. The attribute (with its type) information can be found
in Table 1.

• cell id (categorical type): a unique identifying alphanumeric
string that is assigned to each cell in the dataset.
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• day (sequentially ordered quantitative type): represents the time
point at which sequencing measurements were taken.

• donor (categorical type): a unique identifying number that is
assigned to the 4 healthy adult donors.

• cell type (categorical type): the inferred cell type label for each
cell.

• technology (categorical type): the sequencing technology used
(note that our project is focused on the CITE-seq technology).

Such metadata can be mapped to the multimodal information by
the cell id attribute, which permits stratification of the data based on
the remaining 4 attributes. Consequently, the dataset also consists of
a time-varying semantic. This is shown in the Figure 1 bar chart that
depicts the number of cells included in the dataset when categorized by
cell type and day.

2.3 Task
While highly convoluted, biological systems are extremely well-
organized at a cellular level, and the clear structure and specialization
within these cell populations is largely what enables organs and tissues
to respond to stimuli in a coordinated manner. While the function of
a given cell may be obvious when viewed within its natural environ-
ment, practically every sequencing workflow involves processing steps
that result in the loss of this biological context. Consequently, how
to derive meaningful biological insights from the molecular readouts
obtained via single-cell sequencing technologies represents the essence
of single-cell analysis.

The notion of assigning a biologically meaningful label to each cell
may seem like a straightforward task; however, the dynamic nature of
cells presents many challenges with this practice due to the inherent
limitations of attempting to assign a discrete label onto continuous
data. Despite the fact that cell type labelling is a highly disputed
topic, it remains a key fixture in many analysis pipelines since this
categorization step enables comparisons between different groups, or
clusters, of cells.

As such, our project aims to evaluate the task of assigning a label
to each cell. Conventionally, cell type labelling is performed by con-
sidering only a small subset of genes that are known “markers” for
previously characterized cell types. For example, cells in our heart
can generally be characterized by the expression of a specific subset
of genes, and those specific genes can be leveraged to discern heart
cells from other types of cells. Such labels are generally assigned to
cells based on gene expression information. However, such a labelling
paradigm has a number of flaws: (1) this paradigm does not consider
all available gene expression information, (2) it only considers a single
level of information, (3) it does not account for temporal change in
gene expression patterns, (4) and it’s restricted to labelling cells based
on known cell types (i.e., you can never identify new cell types).

The process of cell differentiation of blood cells is an extremely
well-studied topic because of its importance in every organ and organ
system in the body. As a result, this data set presents a great opportunity
to not only evaluate existing cell type labelling strategies, but also to
investigate strategies that consider multiple modalities of information
(RNA and protein) and how they can vary over time. In particular, we
will analyze how existing software tools can influence the interpreta-
tions of cell type labels, and whether those interpretations are subject
to change depending on the type of information (RNA, protein, or both)
and the time at which the measurement was taken.

2.4 Task Abstraction
With respect to the three levels of actions that tasks can be abstracted
to, the highest-level action (Analyze) of cell type labelling would be to
consume the cell-specific information in the multimodal dataset, as it is
not well-understood. In doing so, we aim to discover new insights that
can allow us to formally evaluate the effectiveness of existing software
tools for our task of cell type labelling. The mid-level goal (search) will
entail exploring characteristics of individual cells with no prior notions

of their respective locations. These locations may manifest as relative
outliers in a scatter plot with respect to the rest of the cell population
or patterns in time-series variation plots. At the lowest-level user goal
(query), we will attempt to summarize this cell type labelling task with
respect to every cell in the population. It is necessary to consider all
cells in a population because the cells can only be compared relative
to other cells in the population, which is particularly important when
identifying potential rare cell types (i.e., if a very small subset of cells
are distant from the rest of the population in terms of their molecular
profile).

In terms of the four kinds of abstract targets, our task will involve
looking for trends amongst all of the data. More specifically, we
hypothesize that certain visualization idioms may delineate populations
of cells with higher resolution than others when evaluating trends such
as clusters. For example, while the provided cell type labels include
only 7 cell types, we expect some methods may identify many more
cell types (e.g., 30 different labels). In treating the assigned cell types
as labels on which to compare clusters of cells, we expected to observe
the qualitative separation of clusters to evolve over the 3-day period.

As for the actual design of visualization idioms, the high number of
attributes will likely necessitate the utilization of multiple families of
design idioms. Reducing, through filtering, aggregation and dimension-
ality reduction will all be employed throughout the analysis project as
those form the basis of many existing software tools. Another common
design idiom will be derivation, as there are many processing steps that
involve subjecting a cell’s molecular information to various statistical
tests, which are subsequently visualized to identify interesting patterns.
In addition, juxtaposition and superimposition in the faceting family,
and color/size/shape from the map family will also be incorporated into
our analysis of visualization idioms.

3 RELATED WORK

Recent years have seen an ever growing amount of scRNA-seq papers
include more complex experimental design and analysis while still
heavily leaning on basic tools such as Seurat or Scanpy. At the core of
most of these tools is the utilisation of non-linear dimensional reduction
(DR) techniques, most commonly t-Distributed Stochastic Neighbor
Embedding (t-SNE) and Uniform Manifold Approximation and Projec-
tion (UMAP) [8, 11]. Using DR, single-cell experiments almost always
are represented as a 2D scatter plot, with each cell’s data (count data
on up to as many as 20000 genes) as a point, with more similar cells
clustering together as a result of DR. After building these DR plots,
the other modalities or metadata (non-RNA data, time-course data,
trajectory analysis) are often overlaid, providing additional insight.

Given that our dataset comes from the blood compartment of the
body - one of the most well-studied stem cell systems - we also explored
other groups’ attempts to analyze and visualize this differentiation pro-
cess. Work by Knapp et al. highlights the challenges in visualizing
differentiation through time as well as identifying and labeling cell
types [7]. Using their own data generated using CyTof (a related tech-
nique to scRNA-seq which allows for capture of 100-200 proteins
per cell), they performed a functional cell type labeling strategy and
connected this with molecular data, contrasting the two. Their unique
analysis required an atypical strategy when assigning cell type, as their
molecular data was often disconcordant with functional information.
Their efforts are summarized in Fig. 2 - after collecting their molecu-
lar data and performing clustering via t-SNE, they overlaid functional
differentiation data allowing for a comparison of molecular and func-
tional states of their cells. Their main aim is to instill a sense that the
molecular data does not capture the functional data, suggesting that our
understanding of the system is limited. Some specific design choices
were made, and are clear when compared to typical DR plots. First, no
marks can be seen for individual cells - instead, a black outline is given
for the density of the population on the plot (75% of all cells falling
within the boundary, centered based on density). Overlaid on top of
this boundary is a shaded density map for a given cell type as defined
by functional experiments, with one boundary and density map pair for
each cell type. Overall the lack of marks for cells in these plots does
allow the viewer to focus on the distribution, driving home the idea that
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for most cell types, molecular data does not capture their differentiation
potential. To further drive this point home, the authors perform hier-
archical clustering in Fig. 3 on each cell type using distances between
clusters from the t-SNE plots in Fig. 2. In this case, by abstracting
the t-SNE plots and combining them with the functional data in a new
way, the authors reiterate their conclusions in a less subjective way than
subjectively judging the plots themselves.

Fig. 2. t-SNE plots of bone marrow stem cells undergoing differentiation
as analysed by CyTof. Black outline indicates the 75th percentile for cell
density in the plot. For each duplicated t-SNE plot, a unique overlay is
shown to indicate where cells of a given cell type have clustered.

Fig. 3. Hierarchy of cell types and states as defined by Knapp et al.
Cell types were functionally defined elsewhere in the original publication.
Hierarchical clustering was performed using pairwise assessment of
differences in the density distributions between all cell types.

Fig. 4 represents a novel way of showing pseudotime trajectory
information that is often missing from scRNA-seq papers. Rather
than collecting true-to-life time-course data, the authors of this paper
leverage the existing heterogeneity of their system. Since blood differ-
entiation is an active process, by analyzing cells at a single time point
they collect several cells on a single biological trajectory. By perform-
ing an additional step of analysis, it is possible to infer a pseudo-time
trajectory. Using the example of two such trajectories, the authors
identify genes that dynamically change alongside the the trajectory
(Fig. 4). To illustrate these changes, the authors use two approaches:

Fig. 4. Pseudo-time analysis of temporally dynamic genes. Top and
Bottom: Two different pseudo-time analyses from the stem cell state to
two distinct final cell states. Left: Heatmaps of genes correlating with
specific pseudo-time trajectories from the stem cell state. Right: Scatter
plots of select genes that are dynamic across the chosen pseudo-time
trajectory in cells traveling that trajectory, with each point as a cell.

heatmaps and scatter plots. Within the heatmaps, the authors place
each gene of interest on its own row, with pseudo-time along the x axis.
Accompanying these heatmaps are scatter plots indicating the same
information, but for a single gene per plot. To the viewer, these two
plots are not redundant, despite having the same genes and pseudo-time
data on them. Each fills a distinct niche based on the depth required: the
heat map gives a larger overview of the set of genes, giving information
on 20 across the trajectory, while the scatterplot only provides 1 gene
per plot. Still, while the scatterplot lacks the global view, it does give a
much clearer indication of the distribution of cells and magnitude of
change for each gene over time.

The last three years have seen a gold rush of competing papers
aiming to achieve the most cells sequenced in a single publication.
Often, these papers are enabled via advances in single cell sequencing
technology or RNA isolation technology. However, as the number of
cells and complexity of the dataset grows, it remains valuable to keep an
eye on how the field decides to visualize the state of the art. One recent
example from 2019 by Cao et al. highlights this trend [1]. Throughout
the paper, the visualization standards of the field predominate. Still,
some new approaches are taken, especially when zooming in on a
specific subset of the paper.

When looking to specific figures in Cao et al., [1], the expected
plots can be seen. In Fig. 5, we are given an overall summary of
the massive dataset published by this group. Despite the size of the
set, t-SNE clustering and the accompanying dot plot provide a good
general overview of the dataset. By breaking down the clustered cells
into day-specific t-SNE plots, they also provide a degree of temporal
information - viewers are able to search and see approximately when
their cell type of interest is first identified by looking at the dot plot and
then cross referencing it to the smaller t-SNE sub-plots. Additionally,
the dot plot provides a valuable resource for researchers interested in
a specific cell type, as now there is a central location for identifying
markers for your cell type of interest. One critique, however, is if this
is really the best use of space given than for almost every single marker
and cell type pair, there is a single strong signal. The usage of a dot
plot as a visualization idiom would be ideal if expression was noisier
or more of the markers were expressed widely or to varying degrees,
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but as most cells only express one of these markers highly the full plot
does seem excessive.

Throughout their publication, Cao et al. perform pseudotime analy-
sis. One way they visualize this is seen with Fig. 6. In this example, the
authors pick out 6 key genes they identify as dynamic during a specific
stage of development. Using colour (as seen throughout almost all of
their plots), they encode which day these cells originated from. By
plotting the relative expression versus pseudotime, as well as including
the colour encoding, the viewer gets an idea of the dynamic nature of
each of these genes. One key note is the large number of zero values,
as is often the case in scRNA-seq experiments. For all 6 genes, a large
number of cells do not seem to express these markers, while others
have a much higher relative expression. This is valuable to see, as it
gives the viewer both an indication of the noise in this data as well as
the amount of missing values or dropout per gene. To remedy this, the
authors add in a black line as an inference for expression patterns seen
during this period in pseudotime. These plots can be directly contrasted
to those in Fig. 4, where the goal is also to show pseudotime analysis
versus target genes. Lacking from Cao et al. in this specific example is
the same higher level heatmap of genes versus pseudotime.

One interesting visualization choice that was seen in Cao et al. was
the inclusion of a 3D UMAP plot seen in Fig. 7. While the use of 2D
t-SNE and UMAP is sprinkled throughout this publication, the authors
decided to include a 3D plot for this one instance of trajectory inference.
Without any prompting, a viewer might actually mistake this plot for a
2D UMAP if not for the faint lines behind the cells themselves. There
is great difficulty in determining how the third dimension plays into
the plot itself (for example, the bottom left cluster could be in any
orientation given our single view). The contents of the plot itself are
similar to others in the publication - the consistent use of colour as
a channel to encode the day of origin for the cells is again seen here.
Added too are cell type and trajectory labels to inform viewers of the
nature of the clusters.

Finally, the authors take a novel approach to assigning expression
values to cell clusters in Fig. 8. First, they generate a subsample of a set
of cells of interest and re-cluster these cells. To this new plot, they then
generate a set of overlays, where cells that express a given marker are
labeled based on their level of expression. Critically, cells without any
expression of the given marker are excluded from each of the plots. By
performing this for each gene, the authors build a map of expression
based on the clusters that is not heavily impacted by occlusion or is not
too crowded by cells with zero expression. These plots then inform the
final plot in the figure, where the overall cell states in the re-clustered
group of cells is inferred using the individual gene markers.

One key take away that is well showcased here is the difficult balance
between resolution and the scale of visualization. When looking at
Fig. 5, we can see how the authors attempt to give an overview of their
data via large-scale t-SNE of all cell types and time points. However,
when more granularity is required, such as when performing trajectory
analysis or looking at gene expression across pseudotime such as in
Fig. 4 or Fig. 6.

4 METHODS AND TOOLS

This dataset has not been previously analyzed by BK nor KM, nor
by any other groups. It was released in late 2022 as part of a Kaggle
competition [2]. We chose to use the two most common packages
for scRNA-seq analysis are Scanpy and Seurat [5, 21]. These tools
are considered the gold-standard for initial exploratory analysis of sin-
gle cell data, and have been continually expanded over the last half
decade [4, 14, 17]. These packages are primarily are geared towards
performing statistical analysis and handling the data, but also have
dedicated components for plotting and visualizing the resulting data
after normalization and cleaning. We chose to use both as functionally
they provide the same core set of idioms and flexibility with design
choices. For more specialized analysis, we chose to implement specific
tools such as monocle3 for trajectory inference and PAGA for graph
abstraction [1, 22]. While Seurat and Scanpy do provide some basic
tools for trajectory inference, they fall short when compared to dedi-
cated packages such as Monocle3. Additionally, Seurat and Scanpy

completely lack the ability to perform graph abstraction on their result-
ing DR plots, making a dedicated package such as PAGA a necessity
if such visualization is required. Monocle3 was chosen specific due
to its performance in trajectory inference as well as its relatively low
computational requirement when recently compared to other inference
algorithms [23].

Common tools such as Scanpy and Seurat use a common set of
idioms for visualization. Within this set of tools, we set out to explore
which best achieved our tasks, and to explore the trade offs between
different idioms. Typically, scRNA-seq analysis heavily relies on the
same set of idioms: linear and non-linear dimensionality reduction,
heatmaps, scatterplots, histograms, and connected graphs. This pri-
marily is due to the nature of the data and the types of conclusions
that are drawn from the data. Given the data is typically quantitative
count data, visual idioms that allow for comparison of counts dominate.
Given the size of the datasets, dimensionality reduction naturally fits
given its ability to allow visualize large complex datasets. Ultimately,
as our goal was to evaluate available tools, we narrowed our scope to
investigating visualization idioms within these packages.

5 ANALYSIS

5.1 Quality control
5.2 Global view
5.2.1 Dimensionality Reduction
Initially, we sought to characterize the gene expression dataset in its en-
tirety with the most commonly utilized visual encodings. DR methods
form the bulk of these methods through their ability to observe global
trends with respect to changes in a clustered attribute, the assigned cell
type labels. In addition, the flat table was stratified by the day attribute.
Constructed using Scanpy, these DR methods were called with default
parameters. Notably, for the non-linear DR methods (UMAP and t-
SNE), Scanpy performs an initial PCA reduction in order to maintain
scalability. Many single-cell analyses perform PCA as a pre-processing
step, and both Seurat and Scanpy provide visual encodings to ensure
that the reduction method is appropriate.

Fig. 10 depicts common encodings that are used to validate the use
of PCA as a pre-processing step. The left plot shows a heatmap of the
principal components when grouped by the cell type attribute along the
y-axis (Fig. 10). We can see that the first several components appear to
be sufficient to capture a majority of the attribute-specific variation that
exists in the expression table. The right plot features a scatterplot that
shows the amount of variation that each principal component captures
(Fig. 10). Interestingly, there is a large drop-off in the standard devia-
tion explained after the first principal component, which may suggest
that this component captures the relative majority of gene expression
variation. Moreover, after approximately 15 principal components,
additional components capture relatively negligible variation in the
dataset (Fig. 10). Overall, the two visual encodings in Fig. 10 are able
to confirm that such a pre-processing step is justified for downstream
analyses, and based on these results, at least 20 principal components
were used in all remaining analyses when working with the reduced
gene expression dataset.

Fig. 11 depicts the reduced gene expression data as a scatterplot
at each time point following DR with PCA, t-SNE, or UMAP. DR
with PCA was unable to capture any separation with respect to the
clustered attribute, and there were no obvious patterns over the global
cell population Fig. 11. In contrast, both non-linear DR methods
were able to capture global trends, which moderately aligned with the
assigned cell type labels. There is not clear separation with respect
to the clustered cell type labels, and this makes it difficult to view the
boundaries for the different groupings. To address this, the scatterplot
of the UMAP embeddings were further faceted by day and cell type in
Fig. 12. In particular, the two-dimensional embeddings are plotted for
the entire cell population, and each cell type is highlighted in turn using
its respective color channel (Fig. 12). This superimposition provides
a much clearer view on the distribution of different cell types, and
how those change depending on the day. While some cell types such
as erythrocyte progenitors, neutrophil progenitors, and hematopoietic
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Fig. 5. Overview of the 2072011 cells sequenced from early mouse embryonic development by [1]. Left: t-SNE clustering of single cell transcriptomes
generated from this study. Clusters are annotated and coloured according to the adjacent dot plot. Individual clustering was performed and shown
below for each of the embryonic days (EX.5). Right: Dot plot indicating specific genes that are selectively expressed in a given cell type. The size of
the dot indicates the percentage of cells in that type that express the marker, and the colour encodes the average expression of that gene in that cell
type.

Fig. 6. Scatter plot of specific genes that are dynamically expressed
during apical ectodermal ridge development. Expression is plotted versus
pseudotime for each cell. Colour encodes which time point the cell
originated from.

Fig. 7. 3-dimensional UMAP of epithelial sub-trajectories. Colour en-
codes which time point the cell originated from. Labels are applied
according to trajectory inference and specific marker gene expression.

stem cells have relatively tight groupings over the three time points, the
locations of other cell type labels appear quite dispersed over the cell

population (Fig. 12).
One of the main advantages of the dimensionality reduction visual

encodings were that they can capture global trends of the dataset, which
is particularly useful for evaluating attribute-specific clustering. In
terms of domain-specific findings, the superimposition in Fig. 12 was
particularly helpful in understanding the overall distribution of different
cell types. Generally, cell types were grouped together, but there were
a few cell types such as monocyte progenitors, B-cell progenitors, and
megakaryocyte progenitors that were quite scattered throughout the
overall population. In the case of B-cell and monocyte progenitors,
the relatively small number of collected cells confounds whether their
scattered distribution is meaningful, whereas with megakaryocyte pro-
genitors, the grouping did get tighter over time. As such, through these
global visual encodings, we concluded that while there was not clear
separation with respect to the assigned cell type labels, they may be
appropriate as a very high-level, conservative grouping attribute. While
applying algorithms such as Leiden clustering [19] were able to find
approximately 20 clusters, it is highly unlikely that such clusters are
biologically meaningful.

The main weaknesses of these scatterplots following DR methods
is that the interpretations are strictly qualitative. The main insight that
these encodings are able to provide is whether there is clear separation
of the clustered attribute. Moreover, readers are not able to precisely
compare such the relative separation of clusters across different time
points. Another limitation is that plotting the two-dimensional embed-
dings of non-linear dimensionality reduction methods require a high
cognitive load when deriving interpretations. This is because DR meth-
ods such as t-SNE and UMAP do not preserve meaningful distances
between different clusters. So while their non-linear reduction methods
may be able to effectively capture local structures in the data, caution
must be applied to avoid assigning any meaning to the extent of any
cluster-specific separation.

5.2.2 Trajectory Inference

Further extending DR methods are a class of more recent statistical
methods known as trajectory inference. Many trajectory inference
methods operate by computing a pseudo-temporal orderings over the
cell population, which can be used to assign an ordering to the different
cell type clusters. Having such an ordering relationship between cell
type clusters can be used to explain possible patterns that may arise from
the gene expression levels of different cells. As such, the Monocle3
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Fig. 8. Sub-trajectory analysis of muscle cell development in the early embryo. A: Cells with myocyte potential (muscle cell potential) were
computationally isolated and reclustered, labeling each cell with a colour corresponding to its day of origin and adding an inferred trajectory to
the clusters. B: Labeling expression of specific genes involved in controlling myocyte development in the myocyte trajectory from A. Cells with no
expression of a given gene are not included in the plot for that gene. C: Cell type inference and annotation from the markers shown in B.

Fig. 9. t-SNE dimensionality reduction of cells across days 2, 3, and 4.
All cells are indicted on each plot by either a grey dot or a coloured dot.
For each cell type, a unique plot is made for each day, with cells of a
given cell type coloured for reference.

Fig. 10. UMAP embeddings faceted by day and cell type. Each row
depicts the superimposition of a cell type in the context of the rest of the
population which is shown in gray.

software [1] was used to construct single-cell trajectories through the
inferred pseudotime.

Fig. 13 depicts the inferred trajectories with respect to the UMAP
embeddings of gene expression. Interestingly, as identified by the
numbered light gray circles, performing trajectory inference analysis
finds 15, 11, and 17 different ”cell fates”, or outcomes, of the gene
expression trajectory for days 2, 3, and 4, respectively Fig. 13. This
finding may provide evidence suggesting that further breakdown of the
cell type labelling may be justified.

Hematopoietic stem cells were specified as the starting attribute-
specific cluster on which to start the pseudotime inference from because
they are still capable of differentiating into any mature blood cell type.

Fig. 14 shows a scatterplot of the UMAP embeddings at day 2, when
augmented with the inferred trajectories. The color channel is used to
represent the continuous pseudo-temporal ordering that was inferred.
The HSC cell type is shown at the bottom of the scatterplot, and the
gene expression pattern suggests a differentiation trajectory where it
branches out to the cell type-specific progenitors over time (Fig. 14).

Overall, the trajectory inference visual encodings are capable of
provide additional directionality to the compared to the DR visualiza-
tions alone. A major advantage that comes with this pseudo-temporal
ordering is that it can infer branching points at which cell differentiation
trajectories may split into different mature blood cell types. It provides
a way to interpret changes in attribute-specific clustering in a continu-
ous manner, which more accurately models the dynamic change in gene
expression levels within and between the different cell type clusters.
This is a particularly suitable dataset on which to apply trajectory infer-
ence analysis due to the focus on the very early stages of differentiation
where many cells are in the midst of responding to factors that influence
their eventual differentiation into a mature blood cell type. Moreover,
the branching structure of the inferred trajectories may help explain the
relative scatter of certain cell types such as megakaryocyte progenitor
cells across the population.

That being said, trajectory inference methods suffer from similar dis-
advantages that DR scatterplot visualizations face, in that it is difficult
to compare the inferred trajectories across different time points.

5.2.3 Networks

Another visual encoding that may be able to capture global trends in
attribute-specific clusters is Partition-based graph abstraction (PAGA).
By generating a topology-preserving map of individual cells according
to their cell type label, PAGA graphs can view the aggregated global
topology in an interpretable manner.

Fig. 15 depicts the the PAGA graph for the cell type labels at each
time point, which represent the course-grained connnectivity structures
of complex manifolds. This abstracted graph encodes confidence scores
on the presence of connections by edge weight, which can be interpreted
similarly to typical bootstrapping methods. The aggregated connectivity
edges between cell type clusters represents an ensemble of single-
cell paths according to their respective gene expression levels, which
allows use to qualitatively view the degree of connectivity between cell
types across days. Interestingly, the neutrophil progenitor cells initially
show relatively thick edge weights with neighbouring progenitor cells
initially, but in the two later time points, the connectivity decreases
(Fig. 15). This decrease may suggest that changes in gene expression
may be stabilizing for a distinct subset of genes that characterize mature
neutrocyte cell functionality. The observation that the PAGA graphs
are fully connected at every time point likely reflects the fact that cell
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Fig. 11. Comparing scatterplots of gene expression data at each time point following dimensionality reduction with PCA, t-SNE, or UMAP. The color
channel depicts the assigned cell type. Left column: linear dimensionality reduction with PCA. Middle column: non-linear dimensionality reduction
with t-SNE. Right column: scatterplot of two-dimensional UMAP embeddings.

type clusters are fully differentiated into their mature blood cell types
(Fig. 15).

While PAGA graphs can depict global topological structure of
attribute-specific clusters without placing a high cognitive load on
the reader. The aggregation with respect to cell type labels was nec-
essary in order to capture the global trends in this dataset. Additional
network-based visual encodings were evaluated, but they focused on
treating single cells or genes as nodes, which incurred significant clutter
and occlusion to the point that deriving any patterns became practically
impossible.

A disadvantage of PAGA graphs is that the aggregation may lose
a significant amount of variation that exists within cell type clusters.
Moreover, the implementation of PAGA graphs provided by Scanpy
does not permit the depiction of cell type labels in a user-friendly
manner, as there is no in-built argument that moves the cluster legend
to the side of the plot.

5.2.4 Optimal transport
While many trajectory methods infer a pseudotime that can subse-
quently be used to order the cells along a trajectory based on the
continuous change in gene expression levels, these methods are still
limited in that they cannot handle such inferences across multiple time
points. Thus, while the psuedotime-based methods can capture insights
with respect to the trajectory of the dynamic changes of gene expres-
sion between different cell types, they are not able to capture the true
essence of trajectory inference, which is to infer the differentiation
trajectories of individual cells across time.

A recent method has been developed that performs the trajectory
inference over a time-series dataset of gene expression at single-cell
resolution called WaddingtonOT [15]. Using the assigned cell type
labels as clusters for each time point, this approach relies on optimal

transport and constructs trajectories of cell differentiation by effectively
stitching together individual cells across time based on similarities
in gene expression profile. As a result, we expected this method to
be able to address many of the limitations of DR visual encodings
and pseudotime-based trajectory inference methods by appropriately
considering the time-series aspect of this dataset.

Unfortunately, we were unable to successfully apply the software
to the current dataset, as the inference process failed upon forming
linking maps that function to connect individual cells across different
time points.

5.3 Subset view
5.3.1 Top ranked genes as a subset
Many visual encodings in single-cell analysis circumvent having to
deal with the high dimensionality of the dataset by extracting a subset
of genes that were found to be differentially expressed. Differential
expression is typically defined in terms of a statistically significant
difference in expression levels between two groups – for example, one
cell type versus the rest of the population. Filtering to only include spe-
cific attributes (genes) is based on the rationale that expression datasets
are typically sparse, and a given cell type can oftentimes be defined
by the expression – or lack thereof – of a subset of genes in a cell’s
DNA. Regardless of whether the identified subset of genes is associated
with an underlying biological mechanism, this approach can effectively
identify signals in gene expression that have led to many interesting
findings at the level of the biological system. Visualization has been
shown to be an essential component in this process of selecting for
genes that are exhibit relatively high or low expression for a particular
cluster of cells compared to the rest of the population.

The most straightforward practice for identifying differential genes
for a given cell type involves ranking the aggregated expression levels
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Fig. 12. Visualization strategies to analyze the appropriateness of PCA
as a pre-processing step for downstream analysis. Left: A heatmap
of the principle components where the color channel is used to depict
the PC values. Cell types are grouped along the y-axis. Right: An
elbow scatter plot depicting the amount of variance that each principal
component is able to explain.

of each gene over the subpopulation of cells. Once the ranking has
been computed, we can simply select the n highest-ranked genes to use
as markers to define that cell type.

One of the most popular visualization idioms for this subset view is
the heatmap. The heatmap in Fig. 16 depicts the top 3 ranked genes in
terms of expression level for each cell type at the different time points.
The cells are grouped by their cell type labels along the y-axis, and the
names of the genes are provided on the bottom, with an annotation that
identifies cases where the same gene was identified as top 3 expression
level at multiple time points (Fig. 16). Clear cell type-specific patterns
emerge with this visualization idiom, as the genes with highest ranked
expression appear darker (Fig. 16). In particular, EryP, HSC, and NeuP
cell types had ranked genes that were distinct from all of the other
cell types (Fig. 16). In addition, a majority of the idenitified genes
were identified at multiple time points as denoted by the color channel
highlighting the gene names, which suggests that such genetic modules
may be characteristic of the defined cell type clusters.

While heatmaps can be quite information dense, one of their advan-
tages is that they can capture the variability within and between cell
type labels for the subset of genes visualized. The act of grouping such
genes by cell type also has the benefit of conveying the relative sizes of

the cell type clusters, and this insight may act to implicitly instill confi-
dence to the reader with respect to whether the ranked genes should be
trusted. For example, given the relatively large population of EryP cells,
the ranked genes identified likely display a distinct enough pattern to
justify the use of those genes in downstream analyses (Fig. 16). In
contrast, the small sample sizes for the BP and MoP cell types are likely
to convey a level of uncertainty due to their susceptibility of sampling
bias, which may would at least serve to caution users from assigning
too much weight, or trust, on the identified genes.

One of the main disadvantages of the heatmap visualization idiom
in the context of this dataset is that it is difficult to make quantitative
comparisons across time points. Moreover, while using the color chan-
nel to depict expression level is effective for qualitative identification
of gene expression patterns, the human eye (and brain) is not sensitive
enough to detect small changes in expression level.

Scanpy offers a similar visualisation idiom where instead of depict-
ing individual cells as a heatmap, it aggregates the expression values
and depicts the aggregated value as a dot. The size of the dot cor-
responds to the fraction of cells in the cell type cluster that detected
the respective genes, and the color channel is used to represent the
aggregated expression value. This encoding is shown in Fig. 17 for the
same top 3 ranked genes given each cell type.

The primary advantage of this visual encoding is that there is far less
cognitive burden compared to the heatmap idiom. Depicting the aggre-
gated expression values as dots may be more conducive to identifying
patterns in the dataset, particularly for the rare cell types, such as BP
and MoP (Fig. 17). The relative size of the dot plot suggests that the
top ranked genes for the BP cell type may be distinct compared to the
other cell types for days 3 and 4 (Fig. 17). Similarly, the dot sizes may
also suggest that the top ranked genes are meaningful for the MoP cell
type at day 2 (Fig. 17). Thus, the additional information encoded into
the size of the dots visual idiom may lead to a different interpretation
with respect to the reliability of the markers identified for the rare cell
type groups. The heatmap was unable to convey such patterns due to
the small sample size.

The dot plot visualization idiom has a couple disadvantages in that
the color channel and size of the dot is used to convey important
information, despite the fact that they are two channels that the human
eye cannot quantitatively assess with precision. As such, this idiom is
likely better served to focus on identifying high-level patterns at the
cell type cluster level.

We assessed one other visualization idiom for the top 3 ranked genes
with respect to each cell type. Fig. 18 is similar to the previous two
idioms but it instead encodes a violin plot to represent the expression
information for each cell type group. In a sense, the violin plot aggre-
gates the single cell expression information to attenuate the amount of
cognitive load on the reader, but unlike Fig. 17, the violin distribution
that it encodes retains much of the variation information within each
cell type.

This particular idiom can depict within-cluster skews of expression
information in a very interpretable manner compared to the heatmap
idiom, while also being able to qualitatively identify high-level patterns
at the cell type level. One interesting insight is that many of the top
ranked genes are not expressed in every cell in the cell type cluster,
which would pose challenges if trying to utilize the genes as a marker
for its respective cell type. This particular insight may guide the single-
cell analysis toward more robust methods when identifying markers
that are truly representative of the cell type of interest.

5.3.2 Differential expression methods to identify a subset

While identification of the top-ranked genes for each cell type is a quick
strategy that can effectively extract signals from the high-dimensional
dataset, there are generally two major disadvantages. First, there is not
guarantee that selecting the top-ranked genes for one cell type will be
mutually exclusive for another cell type. For example, ”housekeeping”
genes refer to genes that are typically expressed by all cell types because
they play a vital role for the maintenance of basic cellular function.
Second, consideration of only highly expressed genes only views the
task from a single angle when in fact the low expression of genes can
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Fig. 13. UMAP dimensionality reduction plots with overlaid inferred pseudotime trajectories. Individual cells are labeled with cell type information
provided from the original dataset. Inferred trajectories were generated using Monocle3. Cells were separated based on their day of origin and
plotted for each day. Individual clusters or cell states are annotated with number labels according to the output of Monocle3.

Fig. 14. test1 Individual pseudotime embedding of cells from day 2,
as plotted in Fig. 13. Cells are coloured according to their position in
pseudotime, with inferred trajectories overlaid via black lines. Individual
clusters or cell states are annotated with number labels according to the
output of Monocle3.

serve as an equally effective marker for a particular cell type.
Fig. 19 may point out some of the limitations of simply selecting

the top-ranked genes. Despite NeuP cells demonstrating one of the
most distinct expression patterns among the assigned cell types, when
comparing the distribution of expression levels for NeuP cells against
the rest of the cell population, we see there is some degree of overlap
between the side-by-side distributions (Fig. 19). As a result, if any of
the top-ranked markers were used as marker genes in practice, they
would be unable to cleanly discern NeuP cell types.

The main hallmark of an effective marker gene is that it can be
reliably used to distinguish a cell type of interest from every other cell
type in the population. An example of a set of well-known markers
genes is for pluripotent stem cells. In 2006, it was demonstrated that
introduction of the Myc, Oct3/4, Sox2 and Klf4 genes were sufficient
convert a mature cell back to a pluripotent stem cell [18]. Given that
the collective expression of these genes is well-documented in the
context of pluripotent stem cells, it represents a reliable marker that
can distinguish pluripotent stem cells from other cell types.

A popular method of identifying differentially expressed genes that
relies heavily on visualization is referred to as a violin plot. There are

Fig. 15. Graph-based abstraction cells shown in Fig. 14. Graphical repre-
sentations were generated using PAGA, with each node representing a
cell type as given by the original dataset. Edge weight is encoded by the
density of each edge, which represents the degree of similarity between
nodes. Graphs were generated for each day of origin for cells from the
original dataset.

two key principles underlying the application of conducting an unbiased
global approach at identifying marker genes. The first principle involves
focusing on changes in gene expression that are statistically significant.
The second principle is a rule of thumb that the largest changes in gene
expression are typically the most likely to be biologically relevant.

Focusing on a single cell type grouping, for each gene we can split
the entire cell population into 2 conditions: the cell type group of cells
and the rest of the population. We can then apply a statistical test such as
t-test to calculate the p-value with respect to each gene. Note that genes
that were completely undetected by the cell type population of interest
were excluded from the statistical test. At this point, we will have a
p-value for every gene that compares the cell type group population
against the rest of the cell population, and to account for the multiple
comparisons problem we can subject the p-values to a Bonferroni
correction. The transformed p-values are the first element of the volcano
plot, where higher values suggest that the difference between the two
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Fig. 16. Heatmap of the top 3 genes demarcating each cell type for days 2, 3 and 4. Cells are grouped according to their cell type label along the
y-axis, with gene IDs listed at the bottom.

Fig. 17. Dot plot of the top 3 genes demarcating each cell type for days 2, 3 and 4. Cells are grouped according to their cell type label along the
y-axis, with gene IDs listed at the bottom. For each dot mark, both size and colour are used as channels to encode information. The size of each dot
encodes the percentage of cells in that cell type that express a given marker, and the colour of each dot represents the log-transformed fold-change
versus the mean for each gene.

groups is more significant. The second element involves calculating
the fold changes of gene expression between the two groups of cells.

We can plot the two elements for each gene and day to obtain the
final volcano plots shown in (Fig. 20). In Fig. 20, each row corresponds
to the time point at which sequencing took place, and each column
corresponds to a cell type label. Given the visual encoding, we can
define a threshold for the fold change and transformed p-value to
determine genes that are differentially expressed. Fig. 20 shows the
genes that are under-expressed in orange and over-expressed in blue,
with the non-significant genes depicted as gray dots. For each panel
in Fig. 20, the two elements were combine to create a score, and the
top 5 differentially expressed genes were selected as marker genes
for that cell type at that time point. Labels are provided for the top
differentially expressed genes, and the size of the point is also slightly

increased (Fig. 20).
This volcano plot is able to visualize the process of filtering out

genes that are not differentially expressed. It can also capture the
magnitude of the differential expression, which users can consider
when determining the most appropriate threshold for to answer their
specific question.

The advantage is of this visualization idiom is that it captures infor-
mation with respect to every attribute in the high-dimensional dataset.
The superimposition of deferentially expressed genes encoded by the
color channel reduces the cognitive load by a large margin.

In the context of this dataset, however, there is no a clear separation
between under-expressed and over-expressed genes. In fact, a majority
of the genes are have a fold change close to zero, which may be a
result of the similarities in gene expression profiles for cells in the early
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Fig. 18. Violin plot of the top 3 genes demarcating each cell type for days 2, 3 and 4. Cells are grouped according to their cell type label along the
y-axis, with gene IDs listed at the bottom. For each violin mark, both shape and colour are used as channels to encode information. The shape of
each violin encodes the distribution of expression for that cell type and gene. The colour of each violin represents the median expression of the
indicated distribution.

Fig. 19. Split violin plots of genes highly enriched in the NeuP cell type.
Expression of these genes is compared with NeuP cells versus all other
cells in the dataset. Distributions are represented via violin outlines, with
individual cells overlaid for each group and gene.

differentiation stages. A peculiar observation with respect to this plot
is that for the EryP, HSC, MasP, MkP, and NeuP cell types, the bulk
of non-significant cells depicted in gray have a fold-change of nearly
zero but are statistically significant (Fig. 20). The disconnect between
fold change and transformed p-value may point towards issues that
assumptions in the statistical test may be violated, or that the mean
aggregation of gene expression values is not appropriate. Non-Gaussian
variation in gene expression levels within each cell type cluster could
explain either of these possible issues, and it could be solved by further
breaking down the assignment of cell type labels into more specific
subsets.

Fig. 21 shows an additional visualization idiom that can be used
to assess the ability of the identified marker genes to discern the cell
type of interest. It is able to capture more information than Fig. 19 by
visualizing the distribution with respect to each cell type. Unfortunately,
the differentially expressed genes do not appear to be an effective
marker strategy, as there is overlap between the distributions for the
cell type group and the rest of the population for each of the marker
genes selected. While there are trends that could be used to distinguish
the EryP cell population at this distributional level (Fig. 21), the degree
of overlap is substantial which would prevent it from picking out most
of the cell type of interest.

5.4 Time-series view
An element that makes the selected dataset interesting is that molecular
information was collected at multiple time points. This application
of visual encodings for single-cell analysis of time-series datasets is
not well-established. That said, there was a need to characterize the
existing softwares in terms of the support that they provide for visu-
alizing such time-series data. The main limitation associated with the
aforementioned visual encodings is that they could only make compar-
isons across time points in a qualitative manner. While such qualitative
observations could still provide interesting insights with respect to the
cell type labels, quantifying the dynamic change in gene expression
levels could facilitate a deeper understanding of the dynamic change of
gene expression as cells are in the early stages of differentiation.

It was found that there was a lack of support for in-built to provide
this quantitative information. However, the most frequently applied
encoding involves viewing a single gene at a time. By grouping the cells
according to the cell type labels, a gene of interest can be aggregated
and subsequently plotted across time as a line plot. To illustrate this
approach, 20 of the most-differentially expressed genes were identified
across the global cell population. Fig. 21 Shows the distribution of
these variable global genes when visualized as a scatterplot according
to the standardized variance against the average expression.

Using the differentially expressed genes over the global population,
time-series line plots were visualized (Fig. 23). For each gene, the
expression values are aggregated by cell type. As such, we can see
trends of differentially expressed genes over the 3-day experiment.

12



Fig. 20. Volcano plots comparing each individual cell type to all other genes across all three time points. Genes that are statistically significant are
coloured (blue for overexpression, orange for underexpression). Statistical significance was generated by performing a two-tailed t-test followed by
false discovery rate correction via Bonferroni method (α of 0.05 and 0.15 respectively).

Fig. 21. Histogram of individual genes enriched in EryP cells. Each gene
has the distribution of expression for each cell type plotted in a vertical
stack. Cell type identity is encoded via the colour of each of the given
histograms.

While there was little variation amongst the cell type labels for some
genes, others were elevated or much lower for certain cell type groups
(Fig. 23). In addition, the time-series analysis was able to capture the
trending direction of gene expression change.

One thing to note is how there appears to be relatively more fluc-
tuation in gene expression levels for the BP cell population. This is
likely a reflection of the small sample size, combined with the scattered
distribution among the overall population that was observed with the
DR visual encodings. Overall, at the level of individual genes, this
visual encoding can provide insight to the change in gene expression
levels over time.

The main limitation with this approach is that only single genes can
be assessed. That being said, the power that this visual encoding is
able to provide has a lot of support from an interpretation standpoint,
as scatterplots and line plots are able to convey information through
channels that are easy to interpret in a quantitative manner. This may
suggest that this limitation is more concerned with methods to identify
the suitable marker genes. Yet it does raise a possible niche for the
development of new visual encodings that are able to quantitatively
capture dynamic changes in global gene expression levels over time.

5.5 Protein information
While transcriptomic information is the primary modality at which
single cells are generally characterized, more recent technological
advancements have allowed scientists to simultaneously unravel addi-

Fig. 22. Scatterplot for all genes in the dataset, examining their average
expression versus their standardized variance. Each point represents
a single gene, with variance being informed by all cells at all timepoints.
Highly variable genes were selected for downstream timecourse analysis.

tional levels of information within cells, including protein levels. This
has led to a new era of single-cell analysis, and CITE-seq is one of
the technologies that has shown a lot of promise through its ability to
capture information on surface protein levels.

That being said, the introduction of this new level of protein informa-
tion has not been reflected in the development of new visual encodings,
at least in terms of popular toolkits such as Scanpy and Seurat. One of
the main findings during the analysis process was that while there are
some statistical methods that can be used to integrate gene expression
and protein levels into a single dataset for analysis, the visualization id-
ioms to convey the derived dataset are almost completely redundant the
methods for gene expression analysis. As such it was decided to omit
the inclusion of visualizations of the integrated protein information on
the basis the interpretations would not change from gene expression
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Fig. 23. Scatter plots for individual genes, plotting the mean expression for each cell type across all three timepoints. Data corresponding to each cell
type is given a colour encoding. Each gene is given its own plot.

analysis alone.
Instead, a focus was placed on using visual encodings to investigate

the protein levels over time, as that would provide insight to the relative
changes in these functional units as cells differentiate. In particular,
Fig. 24 depicts every single protein captured by the CITE-seq tech-
nology following aggregation of protein levels based on the cell type
labels.

While most of the captured proteins were determined to have low
expression levels, this visual encoding can capture interesting trends
over time through the line mark. While most cell types had similar
distributions of protein levels across the three days, there are some
interesting trends that emerge with respect to the fluctuation of protein
levels at particular time points (Fig. 24). This visual encoding is unable
to determine whether the trends are due to noise with the sequencing
technology, however it can capture a global overview of how protein
levels within cells are in a constant fluctuation. The fluctuation captured
by Fig. 24 may also represent variation within the cell type clusters,
which could be observed through previous visualization idioms such as
the DR plots.

6 MILESTONES

An overview of project milestones can be seen in Table 2.

7 DISCUSSION AND FUTURE WORK

This analysis project was able to demonstrate the broad application of
visualization idioms that can be employed throughout the process of
single-cell analysis. The number of research questions that can be in-
vestigated using these single-cell sequencing technologies is practically
endless. Moreover, humans are unique biological entities in that there
exists distinct patterns of variation within each persons genetic infor-
mation. This variation likely manifests in different ways in different
people at a hierarchy of levels, as cells work together to form organs,
organ systems and eventually the human body. As such, the diversity
in cells under investigation coupled with the vast number of research
questions that can be investigated has made the analysis process con-
voluted and highly context-dependent. Seurat and Scanpy attempt to
instill some degree of standardization to this analysis process, and there
has been widespread adoption of these toolkits since their inception.
The utilization of visualization to convey information has been deeply
intertwined in the analysis process of cell sequences, and that role is

likely to grow as more sequencing technologies that capture even more
information are currently being developed.

As such, this project analyzes the different visual encodings that
can be applied for the research question of evaluating cell type label
clusters. A finding that was pervasive throughout the different visual en-
codings that were investigated was the lack of clear separation between
the different cell types, both at the global and individual gene scales.
Given that the dataset measures blood cells at the very early stages of
differentiation, the lack of separation with respect to their molecular
profiles was expected. The main motivation for assessing cells at such
early time points is that the differentiation process that cells undergo
as they mature to fill a specialized role is typically irreversible. So
while clear cell type-specific patterns would emerge if a mature and
differentiated cell population was sequenced, no insights can be derived
with respect to the evolution of the biological system. Investigating the
early stages of cell differentiation is particularly important in the con-
text of disease, as identifying the exact developmental timing at which
malicious cells begin to emerge can be used as a basis for developing
therapeutic interventions to prevent such occurrences. Thus, while it is
a challenging dataset to derive biological meaning, understanding the
molecular underpinnings of cell differentiation over time offers much
promise to basic biological knowledge and medical research.

We were able validate claims of in abstracted tasks, in that the dif-
ferent interpretations can be derived from different visual encodings.
Importantly, those interpretations were also subjected to change over
time as the cells differentiate into mature blood cells. The visualization
idioms offered by Seurat, Scanpy and additional software packages can
be applied to extract biological meaning from a number of different
perspectives. The DR plots provide a global representation of expres-
sion levels of individual cells, which was conducive to evaluating cell
type-specific trends at each time point. The interpretations derived from
trajectory inference methods are much more aligned with the contin-
uous nature gene expression across the cell population. While these
global views remained qualitative, they provide important insights into
the whether the assigned cell type labels were appropriate. In light of
the similarity between different cell type labels in terms of their gene
expression profiles, these methods that were able to capture the entirety
of the high-dimensional dataset provided moderate support for the cell
type labels provided.

Upon selecting a subset of genes to use as markers for identifying
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Fig. 24. Scatter plots for each cell type showing protein abundance across all three timepoints. Each cell type is given its own plot for all of the
captured proteins. Cell type is visually encoded by colour.
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the different cell types, it became apparent that there existed significant
variation of gene expression within each cell type cluster. This conclu-
sion was based on the finding that none of the marker genes selected
by the methods tested could reliably discern every cell in one cell type
from the rest of the cell population. However, the identified marker
genes could be used to reliably capture subpopulations of cells within
the assigned cell type labels, which suggests that further splitting the
cells into more specific clusters may be warranted.

In terms of the visual encodings that standardized single-cell analysis
packages like Scanpy and Seurat provide, there is a lack of support
for visual encodings that capture trends in gene expression levels over
time. There is a general trade-off for the visualization idioms that these
single-cell analysis packages offer in that they can capture global-scale
trends in gene expression profiles or very fine-grained analyses that
assess a subset of genes. As such, this project identified a gap in visual
encodings that could be addressed by future design projects. In devising
an effective visual encoding that could fill this need, we determined
that the current visualization idioms offered by Scanpy and Seurat do
not provide satisfactory support for time-series analysis in an unbiased
manner. Additionally, more visualization strategies could be developed
to incorporate other levels of information (i.e., protein levels) captured
for individual cells.

One potential idea for designing a new visual encoding could involve
an initial step of clustering cells based on gene expression. Algorithms
such as Leiden clustering [19], a generalization of K-means clustering
called X-means clustering [13], or hierarchical density-based cluster-
ing [10] could be used to get an initial decomposition of the cell pop-
ulation. Ideally, the clustering algorithm would be unsupervised with
respect to the number of clusters, and a higher granularity clustering al-
gorithm would be preferred in order to capture as many cluster-specific
trends as possible. Given these labels, we could then identify differen-
tially expressed genes that can characterize each grouping, and these
subsets of genes can then be aggregated and treated as a gene expres-
sion ”modules” to represent each cluster, as in Velten et al. [20]. Genes
that were not identified in the as part of any cluster-specific module
can be aggregated as a ”background” signal module. Together, these
aggregated genetic modules can provide an lower-dimensional repre-
sentation of the dataset that can be visualized with quantitative visual
encodings such as trees, scatter plots, line plots and bar plots. To further
prevent loss of information through aggregation, interactivity can be
incorporated such that selection of a module can expand re-expand the
subset of genes. Successful incorporation of such an approach would
require extensive domain-specific knowledge and validation, but could
be valuable in subjecting global, cluster-level trends to quantitative
analysis.

8 CONCLUSIONS

Single cell RNA sequencing is a powerful tool in the cell biologists’
toolbox, capable of deeply characterizing a given cellular system at
the molecular level. Due to the incredible amounts of data produced,
analysis and visualization is as much of a challenge as is collecting
the data itself. Our body of work in this publication aimed to charac-
terize the existing gold-standard tools for single cell analysis, Seurat
and Scanpy, as well as packages aimed at more specialized analysis
(WaddingtonOT, PAGA, and Monocle3). Throughout our exploration
of our own analysis and others in parallel, a clear gap in the ability
of these tools appeared. While these packages were ideal for either
a high-level interrogation of the dataset, or a more zoomed in exam-
ination targeted at specific genes or cell types, there was a general
lack of content bridging these two extremes. After discussing this gap,
we proposed a potential visual encoding that potentially bridges this
gap. While to date the field has been dominated by bigger and bigger
datasets, we anticipate that as the field matures, more weight will be
given to clever analysis and visualization, allowing researchers to get
the most out of their hard-earned data.
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