
i-ViDa: An interactive visualization tool for DNA reaction trajectories

Chenwei Zhang & Yibo Jiao

What is DNA hybridization?

The fundamental ingredient in the self-assembly of DNA nanostructures and in the operation of DNA nanomachines is the hybridization of single-stranded DNA to form duplexes

Gif cites from https://www.youtube.com/watch?v=0qoqzErrae4

Why DNA trajectories?

Help to understand mechanisms of DNA reaction kinetics.

Further make contributions to DNA nanotechnologies, such as DNA computing, DNA robots, and etc.

The goal

Visualize different reaction pathways laying out on the top of the energy landscape.

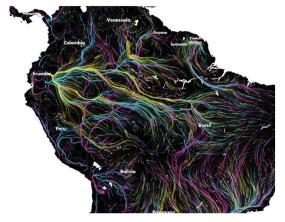
Each simulation generates a different pathway.

How to visualize them on a energy map to get a sense of which reaction is fast, where the reaction stucks, and why it fails ...

Datasets

Dataset

					-	
Item	Secondary structure notation	Energy	Average reaction time	Coordinates (x,y) or (x,y,z)		Secondary structure:((+)).(())
1	()((+)).(()).	float	float	*		Input
2	(((((+))))).	float	float	*		Deep learning framework
(hundreds of thousands items)						Dimensionality reduction 2D or 3D coordinates (x,y) or (x,y,z)
	I	l	I			

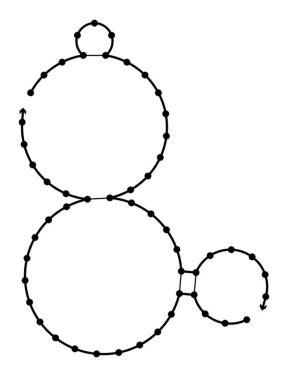

Trajectory	Indx	Time		
1	list: [1,4,6,9,]	list: [float, float, …]		
2	list: [0,1,6,8,]	list: [float, float, …]		
(hundred of trajectories)				

Vis Tool Design

Scatter Plot + Graph for DNA States

- 1. Graph
 - a. Node DNA state (secondary structure)
 - b. Edge Elementary step
 - c. Path Reaction trajectory
- 2. Layout: scatter plot reduced into 2D
 - a. Add time slider
 - b. Animation
- 3. Concerns:
 - a. Efficiency Scalability
 - b. Technique Visualizing flows(svg?canvas?)

Algorithm of Visualizing DNA Structure


Current methods of visualizing DNA structures:

- Focused on single-strand DNA
- No interaction, return a image display

Our goal:

- Develop a standard algorithm of visualizing multiple-strand DNA with interaction
- Input DP(text) -> Output vis

Specified Structure

