# Visualization to assess genome assembly

Armaghan Sarvar

September 28th, 2022





## Genome Sequencing

#### ~

Genome Sequencing:

- Determine the genetic makeup of an organism or cell type
- How specific diseases are formed





Accessible generation of sequencing reads from DNA data

#### **Genome Assembly**

- Lengths of reads are shorter than genomes or even genes!
  - Genome Assembly:
- Concatenating nucleotide reads into the correct order





#### Genome Assembly



- Errors in the decisions made by assembly algorithms: Misassemblies
- Quast [1]:
  - Relocation: the left and right flanking sequences align away from each other
  - Inversion: flanking sequences align on opposite strands
  - **Translocation**: flanking sequences align on different chromosome



### **Project Ideas**



Draw assemblies according to their alignment/mapping to the reference

Visualize positions of different types of misassemblies

- ✓ Large-scale(Whole Genome)
  - Circos-based plots [2]
- Fine-grained
  (Specific contigs/chromosomes)
  - Integrative Genomics Viewer (IGV) [3]



### **Project Ideas**



- Show flanking sequences incorrectly assembled
- Visualize assembly information such as size or contiguity of contigs
  - Draw contigs ordered based on related metrics (Nx, NGx?)
  - Datasets of interest:
    - Genome assembly of human or other organisms from NCBI, etc.

#### Reference



[1] Gurevich, Alexey, et al. "QUAST: quality assessment tool for genome assemblies." *Bioinformatics* 29.8 (2013): 1072-1075.

[2] Jackman, Shaun D., et al. "Tigmint: correcting assembly errors using linked reads from large molecules." *BMC bioinformatics* 19.1 (2018): 1-10.

[3] Thorvaldsdóttir, Helga, James T. Robinson, and Jill P. Mesirov. " Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration." *Briefings in bioinformatics* 14.2 (2013): 178-192.

