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Abstract—The three billion base pairs that comprise the human genome present biomedical scientists with staggeringly complex
datasets to analyze. One particular area of interest is the identification and analysis of genomic variants. Structural variants (SVs)
are of significance as there is extensive research associating SVs to various human diseases. SVs are annotated in bioinformatic
databases with various quantitative and categorical attributes, and these annotations are a wealth of information. Given the complex
and high-dimensional nature of genomic variant datasets, we implemented a visualization tool that allows for a multiscale analysis of
SV data. Our visualization tool provides a multiscale representation of SV data by utilizing different views and visual encodings to
represent multiple attributes for a given SV. The tool is implemented using Gosling.js, a bioinformatics visualization language, and D3.js.
It consists of a Circos plot and linear genome browser view, which indicate the location of SVs within the genome, a set of bar charts to
represent summary statistics of interest, and a tabular view that lists out all SVs with clinical annotations and relevant details for the
user to explore. The tool is designed for bioinformaticians that are interested in investigating and understanding relationships between
structural variants within a particular sample.

Index Terms—Structural variants, Genome Sequencing, Clinical genetics

1 INTRODUCTION

The advent of genome sequencing in the biomedical sciences has pro-
vided researchers with massive, high-dimensional datasets that can
be used for a variety of purposes such as understanding genetic vari-
ation in the human population and elucidating the genomic cause of
diseases [10]. Genomic data can be considered as having a multi-
scale structure. This large, multiscale structure can make it difficult to
interpret and understand genomic information.

Visualization tools can be used to better understand the overall struc-
ture of genomic information, as well as to gain insights into potential
relationships within genomic data. A major area of interest in genomics
is finding genetic variants within the genome. Genetic variants are con-
sidered to be any change in the sequence of nucleotides that make up a
given DNA sequence in comparison to a reference sequence. Genetic
variants can range in size, from single nucleotide variants (SNVs), to
structural variants (SVs) which are any variants larger than 50 base
pairs (bp) [9].

Structural variants can take on a variety of forms including dele-
tions, insertions, duplications, inversions and translocations. These
structural variants can result in a range of functional consequences, and
often contribute to the occurrence of diseases. Structural variants that
cause disease are considered to be “pathogenic”. Pathogenicity of a
variant can fall on a spectrum from being highly pathogenic or likely
pathogenic to neutral or benign [1].

Biological data are often stored and shared in large, publicly avail-
able databases. Data from these databases can be downloaded as a
text file and used for bioinformatic analysis [5]. The National Con-
sortium of Biological Information (NCBI) provides clinically relevant
structural variants and their corresponding pathogenicity annotations
in its ClinVar database. In this work, we aim to use a curated set of
ClinVar structural variants that have been annotated with pathogenic-
ity classifications to develop a tool that visualizes a user’s structural
variants in relation to ClinVar’s reviewed SVs. Data from ClinVar will
be used to develop filtering mechanisms to allow for the visualization
of variants of differing levels of pathogenicity. To demonstrate the
utility of our visualization tool, we will use the Human HG002 dataset,
which is a set of variants pertaining to a single individual [13]. The
SVs from HG002 will be queried against the set of ClinVar SVs to
identify the pathogenicity of the SVs from HG002. These results will
be displayed on a global view of the genome, as well as on individual
chromosomes, providing different levels of detail in the multiscale

data. Furthermore, we will provide details about associated disease
information for individual SVs, based on the ClinVar annotations.

2 RELATED WORK

There are a variety of tools that have recently been introduced for the
visualization of SVs. This section will discuss the implementation and
utility of these approaches, as well as their benefits and limitations.

2.1 Linear Genome Browser

Linear genome browsers were one of the first classes of tools used
to visualize the human genome. The UCSC Genome Browser was
initially developed during the Human Genome Project and allowed
for the visualization of the DNA sequences of all 23 chromosomes.
Linear genome browsers typically display the nucleotide sequence of
interest below a reference sequence. The nucleotides that comprise the
DNA sequence of interest and the reference genome are displayed in a
horizontal view. Furthermore, custom views of the genome or “tracks”
can be added to linear genome browsers in order to visualize different
aspects of the genome such as genomic variants [3].

The Integrative Genomics Viewer (IGV) tool can be considered as
a type of linear genome browser, which allows for the visualization
of diverse genomic data types. The viewer consists of a series of
rectangular panels. The top panel shows the region being investigated
on a chromosome in a horizontal view. Data being visualized through
IGV can also include annotations in regards to phenotype, experimental
label or clinical label. These annotations can be visualized in the two
leftmost columns, with the annotated categories listed vertically [8].

While linear genome browsers have a wide range of utility in the
visualization of genomic data, one caveat arises when considering
the fact that they are based on visualizing short-read sequencing data.
Short reads are not ideal for identifying structural variants, so linear
genome browsers have not been optimized to visualize structural variant
data [11].

2.2 Ribbon

The Ribbon visualization tool provides a similar view to linear genome
browser visualization tools but is designed to be compatible with long
read sequencing data. Horizontally at the top of the visualization is a
representation of the reference genome segmented into chromosomes.
Users can select a chromosomal section to see the relevant sequence
alignments of interest lined up vertically, as well as structural variants
such as translocations [7]. This visualization can be considered as
an improvement over the IGV visualization tool due to its support of
visualizing long-read sequencing data.



Table 1. What-why-how for our structural variant visualization instance.

Question Description
What? Input SV calls and associated ClinVar annotations for

pathogenicity.
Why? Explore and summarize an SV dataset to understand the

distribution of variants and/or identify clinically relevant
SV candidates for further analysis.

How? Multiview presentation of variants at different levels of
granularity (genome-wide, chromosomal, single SV).

2.3 MoMI-G: A Graph Based Genome Browser
MoMI-G is a web based genome graph browser that contains multi-
ple panels that can be used to visualize different aspects of genomic
structural variants. The panels contain three main views. The first
view is a circos plot which provides a chromosomal level overview of
the structural variants. Within the circos plot, the structural variants
are represented by curved line segments on different regions within
the chromosomes. The second view is a table, which contains meta-
data on each annotated structural variant such as the type of structural
variant (insertion, deletion, translocation, duplication, inversion), the
chromosome the variant occurs on and the start and end position of the
SV. Finally, the browser also contains a linear genome browser view
which visualizes structural variant positions in relation to a reference
genome [12].

3 TASK AND DATA ABSTRACTION

We reframe our project in the what-why-how framework in Table 3.

3.1 Task
Clinical researchers usually obtain several thousands or even millions
of SV calls for a single sample. Exploring the distribution of variants
is a data validation step and can help generate hypotheses. Addition-
ally, identifying the medically relevant SVs within a set is crucial for
determining the cause of disease and gaining a better understanding of
the role of these genomic aberrations in human health. The biological
relevance of a variant is often inferred by manually querying a database
of known variants (e.g. ClinVar) for matches. The presence or absence
of a variant in a database can be used as a metric for prioritizing variants
for further analysis, and the extra data available in the database is also
used to annotate these variants.

At the analysis level, a clinical bioinformatician both consumes and
produces new information from a large SV dataset. By analyzing a
set of SVs, the researcher can verify, disconfirm or even generate a
new hypothesis about how a disease develops or progresses. The pro-
cess of annotating variants with clinical and phenotypic data produces
new information. Once a bioinformatician obtains a set of SVs, they
may want to examine the global distribution of variants, select a set
of clinically relevant candidates from the dataset or compare several
potentially relevant SVs to one another. They may also be interested
in summarizing the entire dataset to get a global view of the genome
or a region of it, for example “how many insertions are present on
chromosome 21?” or “how many pathogenic variants are present in my
dataset?” At the search level, a bioinformatician must browse through
a set of SV calls to identify variants of interest. The locations of these
SVs are unknown and the exact identity is unknown as well. The user
will likely be browsing for SVs with specific clinical attributes, such
as SVs labelled as “pathogenic” or “likely pathogenic”. There may
be cases where a user is simply exploring their dataset, as well, to see
if any of their SVs are present in a database, and what diseases are
associated with it.

3.2 Data
Structural variants are identified in relation to a reference genome.
The human reference genome contains 24 distinct chromosomes, so
the chromosome is a categorical “bin” within the reference. Variants
are defined by their start position along a certain chromosome in the
reference, making them ordered and quantitative. The sequence of the
variant, also referred to as the allele, is another important characteristic

of SVs. A variant is a single item within a tabular SV dataset. The
data presented in our visualization was derived from two input datasets:
the ClinVar database [5] and variant calls for the human individual
HG002 [13]. The HG002 dataset is used as an example input. Both
datasets are tabular, where one item corresponds to a single variant.
The ClinVar database consists of 150,782 items in total, and attributes
include SV chromosome, position, type, allele, clinical significance,
associated phenotype list and associated gene list. The HG002 dataset
contains 46,024 items, and attributes include SV chromosome, position,
type and allele.

In order to annotate variants with clinical information, we gener-
ated a custom dataset by searching the HG002 variants for matches
in ClinVar. The HG002 SVs could not be matched simply by iden-
tical start positions or sequences because these attributes often vary
slightly. For a variant form HG002 to match a variant in ClinVar, we
expected their respective locations to be within close vicinity of each
other. We also calculated the similarity of variants as a derived variable
while performing the search. The similarity score is a string metric
that represents how well the sequences from the two variants match.
Considering the characteristics of genomic sequences, we performed
a local alignment between the two sequences and used the score from
the alignment matrix. This value is then converted to a percentage. The
output of this search is a set of HG002 variants with matches in ClinVar,
and is a combination of the attributes in the two input datasets. While
the alleles were used to calculate similarity, they were not presented in
the resulting visualization. A summary of these attributes is presented
in Table 2.

4 SOLUTION

Our solution is an interactive multi-view visualization tool that presents
the structural variants in the HG002 SV dataset, highlighting matches
and providing relevant clinical and metadata. The various views rep-
resent different levels of detail within the HG002 dataset. The top left
portion of the visualization provides a global view of variants in their
genomic context (Figure 1A). The SVs and their position along the
reference genome is displayed using a Circos plot [4]. Intrachromo-
somal SVs are encoded by rectangle marks, while interchromosomal
SVs (i.e. translocations) are encoded by links. The outer track contains
all variants in the HG002 dataset, providing a summary of the entire
variant call set. The inner track contains all variants from the custom
match dataset. The inner track provides a summary of the clinically
significant SVs, and allows users to explore the distribution of variants
and identify patterns on a global scale. Two tracks were used because
there are many more variants in HG002 that do not have matches than
there are variants with matches, and showing all variants on the same
track would likely cause occlusion of matches by the more prevalent
non-matches.

The hue channel is used to encode the match status and pathogenicity
of variants, using a custom scale that has diverging and categorical
elements (Figure 2). While three of the pathogenicity levels (benign,
likely pathogenic and pathogenic) have an inherently diverging order,
variants without a pathogenicity annotation (“unknown significance”)
do not fall in this order. Therefore the benign, likely pathogenic and
pathogenic variants are encoded using a diverging green to pink colour
scale, while variants with unknown significance are encoded by a
separate blue hue. Items on the outer Circos track, which contains all
HG002 variants, are encoded by a neutral, grey hue, which allows items
on the inner track to pop. This colour scale allows users to quickly
identify pathogenic and likely pathogenic variants from those that are
not clinically relevant.

Below the Circos plot is a linked, linear view of the genome, which
encodes all matching SVs with rectangle marks (Figure 1B). When a
user brushes across a region in the Circos plot, the linear view navigates
to this region, providing a more detailed slice of the matches within
it (see Figure 3). The brushed region is highlighted within the Circos
plot to verify what region is being shown in the linear view. Also, the
brushed region in the Circos plot can be modified to the visible range in
the linear view by clicking and dragging. The viewpoint can be zoomed
in further by double clicking on the linear track. The encoding is mostly



Table 2. Attributes in input and custom datasets.

Variable name Description Type Possible values Origin
Allele ID Identifier/key for the ClinVar variant Categorical 150,782 ClinVar
Chromosome Chromosome that the variant is located on Categorical 22 possible values: 22 autosomes + 2 sex chromosomes HG002
Pos Start position of HG002 SV along chromo-

some
Quantitative 1 - length of chromosome HG002

Type Type of SV Categorical 5 possible values: insertion, deletion, translocation, mi-
crosatellite, duplication

HG002

ClinicalSignificance Pathogenicity or clinical relevance for a vari-
ant

Categorical,
with ordering
between be-
nign, likely
pathogenic
and
pathogenic.

4 possible values: Uncertain significance, benign, likely
pathogenic, pathogenic

ClinVar

PhenotypeList Phenotypes (diseases) associated with a
variant

Categorical 11,583 possible values: Up to 5 phenotypes are given
listed for a single variant; if more than 5 are associated,
the number of phenotypes is given instead

ClinVar

HGNC ID List of genes (in HUGO gene nomenclature)
overlapping a variant

Categorical 7,562 possible values ClinVar

Similarity The similarity of the HG002 variant to the
corresponding ClinVar variant. Given as a
percentage.

Quantitative 0-100 Derived

shared with the Circos plot; variants are all encoded by rectangle marks,
and their lengths are encoded by horizontal width. Instead of links, the
breakpoints for interchromosomal regions are encoded as rectangles,
because connections are more difficult to display on a linear track,
especially when they are far apart within the genome. The length
attribute is not encoded in the Circos plot because most variants are too
small to be visible in the context of the whole genome. The linear track
is automatically configured for semantic zooming (see Implementation),
so marks only become visible when their calculated width takes up
more than one pixel. Hovering over a variant in the linear view causes
a tooltip to appear with details of its specific location, type (which is
no longer encoded by different marks), similarity score and a list of
phenotypes (diseases) that it is associated with.

The linked Circos plot and linear track was chosen as the genome
browser idiom to provide both a global and focus view of variants.
Circos plots are more space-efficient than linear tracks for presenting
the whole genome, and are also more effective at presenting connections
(for interchromosomal variants). The linked linear view allows users to
examine variants at a smaller scale while still providing local genomic
context, and has a lower barrier to entry than graph-based visualizations,
which are less intuitive.

The bottom section of the panel contains a table of all HG002
matches with some visual encodings (Figure 1C). This provides gran-
ular details about each match, including their exact positions, types,
clinical significance, similarity, ClinVar allele ID, associated pheno-
types and overlapping genes. Clinical significance is listed and encoded
by the colour hue, and similarity score is represented as a line mark,
where the horizontal length represents the exact value. Since the table
contains many attributes, these visual elements allow users to make
judgments about the most important attributes more quickly. Rows can
be sorted to rank candidate SVs based on their position, type, clinical
significance or similarity, and multi-sorting is available (Figure 4). The
table is paginated so it remains a reasonable size, and by default all
matches are shown.

The top right section of the visualization panel contains sum-
mary plots and interactive controls for filtering and selecting variants.
Stacked bar charts (Figure 1F) are used to present the number of variants
per chromosome in the ClinVar and HG002 match datasets. Pathogenic-
ity is also encoded by the hue channel in these charts. This allows users
to quickly identify patterns in SV distribution within and between the
two datasets. Users can select matches by pathogenicity level using
checkboxes (Figure 1D), which filters variants shown in the Circos
plot, linear track, table and stacked bar chart. Users can also navigate
to a specific chromosome using a dropdown menu (Figure 1E). This
navigates the Circos brush mark and linear track to that chromosome
and filters variants shown in the table. These filtering techniques reduce
the number of items shown, and are particularly useful for exploring

Table 3. Team members’ contributions.

Contribution Armita Janet Neera
Conceptualization 33% 33% 33%
Design 33% 33% 33%
Data Cleaning and preparation 75% 5% 20%
React app structure 0% 100% 0%
Circos plot 100% 0% 0%
Linear plot 0% 0% 100%
Stacked bar charts 0% 100% 0%
Table 0% 100% 0%
Interactions and linking of views 0% 100% 0%
Course deliverables (slides + reports) 33% 33% 33%

specific categories of variants and identifying “hotspots” within the
genome. Filtering items was chosen as the method for reducing items
as opposed to aggregation or dimensionality reduction because the
purpose of our tool is mainly exploration. Aggregation and dimension-
ality reduction requires data transformations, and these transformations
abstract away certain details that may be necessary for exploration or
hypothesis generation.

5 IMPLEMENTATION

The ClinVar and HG002 variant datasets were preprocessed and cleaned
using Python and command line tools. Python was also used to identify
and score ClinVar matches in the HG002 dataset. The visualization
solution was implemented as a web application using various Javascript
libraries. The Circos plot and linear genome track were implemented
using the Gosling.js grammar and visualization package [6], including
the linking of views, brushing and tooltip. Gosling.js provides a gram-
mar for genomic visualizations, and is automatically configured for
certain idioms such as semantic zoom. The summary bar charts were
implemented with D3.js [2]. The React library was used for the user
interface and state management, along with the UI libraries react-table
and react-select. The team members’ contributions are described in
Table 3 The estimated and actual hours and completion dates for our
project are outlined in Table 4.

6 RESULTS

Our final visualization is depicted in Figure 1. The aim of our project
was to develop a visualization tool that displays pathogenicity annota-
tions for multi-scale structural variant data to guide users in exploring
the dataset, identifying clinically relevant variants or comparing several
candidate SVs. Our tool successfully displays the SV data at multiple
levels using several different views and idioms. The views are linked
and interactive, which reduces cognitive load and provides context



Fig. 1. Final visualization panel. The Circos plot (A) contains an outer track showing all HG002 variants, and an inner track showing all ClinVar
matches. The Circos plot and linear view (B) are linked through brushing, shown by the blue brush mark. When the user hovers over a variant in the
linear view, a tooltip will appear with details. A table (C) lists HG002 matches and also encodes clinical significance and similarity. Two stacked bar
charts (F) show the total number of variants per chromosome for ClinVar (top) and for the HG002-Clinvar matches (bottom). Matches can be filtered
by pathogenicity (D) or by chromosome (E), which updates the Circos plot, linear track, table and stacked bar charts.

Table 4. Expected and actual completion dates and required time for project tasks.
Task Estimated Completion Date Actual Completion Date Estimated Time (hr/person) Actual Time (hr/person) Description & Assignments
Project Pitch Sep 29 Sep 29 2 2 -
Pre-proposal Meeting - - - - All
Proposal Oct 21 Oct 21 3 4 All
Obtain data, initial analysis for proposal Oct 21 Oct 21 2 2 Janet
Data cleaning Oct 27 Nov 13 2 2 Neera
Match HG002 variants to ClinVar dataset and finalize inputs Nov 3 Nov 15 4 4 Armita

UI implementation (initial; pre-”Post-Update” meeting)

Nov 5 Nov 9 2 3 React app setup and Gosling config: Janet
Nov 16 Nov 13 10 12 Bar charts: Janet
Nov 16 Nov 15 12 10 Circos plot: Armita
Nov 16 - 12 8 Linked linear view: Neera

Written Update Nov 16 Nov 16 6 6 All
Peer Project Review Nov 17 Nov 17 2 2 All
Post-Update Meeting Nov 24 - - - All
Make any necessary changes to plans Nov 26 N/A 2 N/A All

Finish implementing visualization

Dec 12 Dec 14 10 14 Circos plot: Armita
Dec 12 Dec 14 12 8 Linked linear view: Neera
Dec 12 Dec 16 30 24 Interactive features: Janet
Dec 12 Dec 16 4 2 Match table: Janet

Presentation Dec 15 Dec 15 6 6 All
Final Report Dec 17 Dec 17 8 8 All



Fig. 2. Custom colour scale for variants.

Fig. 3. Linking of Circos plot and linear track through brushing. A tooltip
with SV details appears when a variant is hovered over on the linear
track.

Fig. 4. Table of HG002 matches, with clinical significance and similarity
scores visually encoded.

when filtering and reducing items. Item selection was not implemented
in our solution, therefore individual variants cannot be compared easily
(see Discussion and Future Work section). Overall, our solution pro-
vides multiple levels of detail for the HG002 structural variant dataset,
allowing for summarizing patterns and identifying candidates, but falls
short in the task of comparing items. We describe a usage scenario for
our tool below.

Usage Scenario: HG002 Dataset Exploration
A bioinformatician is interested in using the HG002 dataset for their
research, and wants to explore the dataset to get more familiar with
it. They first look at the outer track of the Circos plot, and notice
that HG002 variants are mostly evenly distributed across the genome.
Looking at the inner track, they quickly notice that the majority of
interchromosomal structural variants involve chromosome 1. Looking
at the lower stacked bar chart on the right, they also notice that the chro-
mosome has significantly more variants than the other chromosomes.
Next, they choose chromosome 1 from the dropdown, which causes the
linked linear plot to navigate to that region. The table of matches is also
updated to reflect this selection. They notice that most variants occur
at the beginning of the chromosome, or the left side of the linear track.
They sort the match table, and find that most pathogenic variants have
very low similarity scores. They consider that these findings may be
biologically interesting, but may also suggest biases in the data, taking
note that they should further analyze chromosome 1.

7 DISCUSSION AND FUTURE WORK

While Gosling.js allows for the implementation of many bioinformatic
visualizations, it is a very new tool that is undergoing active devel-
opment, and certain customizations are not currently available. For
instance, the ability to add interactions such as click events have not
been added. As a result, we were unable to implement a “variant selec-
tion” interaction, which would allow users to identify specific structural
variants of interest from the genome plots for comparison. Our visually
encoded table was an alternative to this interaction, and although it
provides more detail for filtered variants, item selection would have
been more effective for comparisons. Furthermore, the tool is very
specific to the generation of high-level genomic visualizations, and is
not very customizable. The tool is quite opinionated, and many design
choices are default or only slightly modifiable. For instance, the Circos
plot can only be configured in a counter-clockwise direction, and only
eight marks and ten channels are currently supported. As an extension
of this issue, custom marks and channels are not available.

We learned many lessons during the course of this project. The
main lesson was the importance of understanding the full range of
capabilities of tools before and while planning a design. We had to
pivot our plans several times due to unexpected roadblocks, and would
have been better off had we taken the limitations of our tools into
account before jumping into the implementation of the visualization.

Going forward, we plan to implement additional interaction and
filtering features into the visualization. For example, user interactions
with the Gosling plots could be implemented so that a user can select
specific variants to be visualized in the table. We would also be inter-
ested in adding custom glyphs to represent different types of variants
in the table. In terms of the type of data being analyzed, we would like
to add the ability for users to input their own custom structural variant
datasets. Furthermore, additional tracks could be added to the Circos
plot to represent the positions of human genes on the chromosomes.
The addition of gene level information can allow for insights into a
variety of derived attributes such as whether the SVs occur within gene
regulatory elements, which would allow for users to investigate how
dysregulation within these elements correspond to pathogenicity.

8 CONCLUSION

The main objective of this project was to build a tool for the visualiza-
tion of structural variant data. We developed a multi-scale visualization
of this data, including a Circos viewer, linear browser, and dataset
summary plots, along with a tabular view of the match data. To carry
out this aim, we developed the genomic visualizations on top of the



Gosling.js grammar. Gosling.js allowed for the implementation of
interactive, bioinformatics-specific visualization idioms, along with
the ability to add linking between these visualizations and panning to
browse through the linear track. The bar plots allow the user to view
various statistics relevant to a given set of structural variants, and item
filtering reduces the number of items on the screen to reduce cognitive
and computational load. During development, the novelty of Gosling.js
proved to be a limitation for our visualization as language currently
does not allow for the implementation of features such as click interac-
tions, and is quite rigid in terms of how genome visualizations should
be presented. Overall, our tool provides bioinformatic users the ability
to view complex genomic structural variants, aiding in the ability to
interpret this type of data.
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