Ch 13/14/15: Reduce, Embed, Case Studies

Paper: TopoFisheye Example Present: Biomechanical Motion

Tamara Munzner
Department of Computer Science
University of British Columbia
CPSC 547 Information Visualization
Week 8 & 10 Oct 2017

http://www.cs.ubc.ca/~tmm/courses/547-17F
Ch 13/14/15: Reduce, Embed, Case Studies
Paper: TopoFisheye
Example Present: Biomechanical Motion

Idiom: cross filtering
• item filtering
• co-ordinated views/controls combined
• all scented histogram bisliders update when any ranges change

System: Crossfilter

http://square.github.io/crossfilter/

http://www.cs.ubc.ca/~tmm/courses/547-17F
Ch 13/14/15: Reduce, Embed, Case Studies
Paper: TopoFisheye
Example Present: Biomechanical Motion

Idiom: histogram
• static item aggregation
• task: find distribution
• derived data
 – new table: bins, values are counts
• bin size crucial
 – pattern can change dramatically depending on discretization
• opportunity for interaction: control bin size on the fly

Idiom: scented widgets
• augmented widgets show information scent
 – cues to show whether value is dwelling down further vs looking elsewhere
• concise use of space: histogram on slider

Idiom: scented widgets
• augmented widgets show information scent
 – cues to show whether value is dwelling down further vs looking elsewhere
• concise use of space: histogram on slider

Idiom: Hierarchical parallel coordinates
• dynamic item aggregation
• derived data: hierarchical clustering
 • encoding:
 – cluster bar with variable transparency: line at mean, width by min/max values
 • color by proximity in hierarchy

Idiom: aggregation via hierarchical clustering (visible)

Hierarchical Clustering Explorer

Dimensionality reduction
• attribute aggregation
 – derive low-dimensional target space from high-dimensional measured space
 – use when you can’t directly measure what you care about
 – true dimensionality of dataset compressed to be smaller than dimensionality of measurements
• latent factors, hidden variables

Dimensionality vs attribute reduction
• vocab use in field not consistent
• dimensionality
 • attribute reduction: reduce set with filtering
 – includes orthographic projection
 • dimensionality reduction: create smaller set of new dims/attribs
 – typically implies dimensional aggregation, not just filtering
 – vocab projection/mapping

System: Hierarchical Clustering Explorer

Understanding synthetic dimensions

- Specular-Metallic
- Diffuseness-Glossiness

Interacting with dimensionally reduced data

Dimensionality reduction & visualization

- why do people do DR?
 - improve performance of downstream algorithm
 - avoid curse of dimensionality
 - data analysis
- abstract tasks when visualizing DR data
 - dimension-oriented tasks
 - naming synthesized dims, mapping synthesized dims to original dims
 - cluster-oriented tasks
 - verifying clusters, naming clusters, matching clusters and classes

Cluster-oriented tasks

- verifying, naming, matching to classes
- as discernable clusters, clearly discernable clusters, clear match clusters, partial match clusters, no match clusters

Linear dimensionality reduction

- principal components analysis (PCA)
 - first try: PCA (linear)
 - second try: charting (nonlinear DR technique)
 - result: errors fall off sharply after ~45 dimensions
 - result: 104 high-res images of material
 - proc can handle curved rather than linear structure

Nonlinear DR

- many techniques proposed
 - many literatures: visualization, machine learning, optimization, psychology...
 - t-SNE: excellent for clusters
 - but some trickiness remains:
 - http://distill.pub/2016/misread-tsne/

Finding semantics for synthetic dimensions

- looking for meaning in scatterplots
- people inspect images corresponding to points to decide if axis could have meaningful name
- cross-check meaning
- arrows show simulated images (teapots) made from model

Idiom: DOITrees Revisited

- partial match
- clear match
- no match
- some items dynamically filtered out
- some items dynamically aggregated together
- some items shown in detail

VDA with DR example: nonlinear vs linear

- DR for computer graphics reflectance model
 - goal: simulate how light bounces off materials to make realistic pictures
 - computer graphics: BRDF (reflectance)
 - idea: measure what light does with real materials

Dimensional d

Idiom: Dimensionality reduction for documents

- why do people do DR?
 - improve performance of downstream algorithm
 - avoid curse of dimensionality
 - data analysis
- abstract tasks when visualizing DR data
 - dimension-oriented tasks
 - naming synthesized dims, mapping synthesized dims to original dims
 - cluster-oriented tasks
 - verifying clusters, naming clusters, matching clusters and classes

Cluster-oriented tasks

- verifying, naming, matching to classes
- as discernable clusters, clearly discernable clusters, clear match clusters, partial match clusters, no match clusters

Linear dimensionality reduction

- principal components analysis (PCA)
 - first try: PCA (linear)
 - second try: charting (nonlinear DR technique)
 - result: errors fall off sharply after ~45 dimensions
 - result: 104 high-res images of material
 - proc can handle curved rather than linear structure

Nonlinear DR

- many techniques proposed
 - many literatures: visualization, machine learning, optimization, psychology...
 - t-SNE: excellent for clusters
 - but some trickiness remains:
 - http://distill.pub/2016/misread-tsne/

Finding semantics for synthetic dimensions

- looking for meaning in scatterplots
- people inspect images corresponding to points to decide if axis could have meaningful name
- cross-check meaning
- arrows show simulated images (teapots) made from model
- check if those match dimension semantics

Dimensions-oriented tasks

- naming synthesized dims: inspect data represented by lowD points
- abstract location of each point as linear combination of weights for each axis
- mapping synthesized dims to original dims

Linear DR

- first try: PCA (linear)
 - result: errors fall off sharply after ~45 dimensions
 - result: 104 high-res images of material
 - proc can handle curved rather than linear structure

Nonlinear DR

- second try: charting (nonlinear DR technique)
 - result: errors fall off sharply after ~45 dimensions
 - result: 104 high-res images of material
 - proc can handle curved rather than linear structure

Understanding synthetic dimensions

- Specular-Metallic
- Diffuseness-Glossiness

Embed: Focus+Context

- combine information within single view
 - elide
 - selectively filter and aggregate
 - superimpose layer
 - local lens
 - distortion design choices
 - region shape: radial, rectilinear, complex
 - how many regions: one, many
 - region extent: local, global
 - interaction metaphor

Ch 14: Embed
Hierarchical Clustering Explorer
- heatmap, dendrogram
- multiple views

System: VisDB
VisDB Results
- partition into many small regions: dimensions grouped together

VisDB System
- table: draw pixels sorted, colored by relevance
- group by attribute or partition by attribute into multiple views

VisDB Analysis
- table: draw pixels sorted, colored by relevance
- group by attribute or partition by attribute into multiple views

Scagnostics analysis
- scatterplot diagnostics
- scagnostics SPLOM: each point is one original scatterplot

Ch 15: Case Studies

Graph-Theoretic Scagnostics
- scatterplot diagnostics
- scagnostics SPLOM: each point is one original scatterplot

VisDB Results
- partition into many small regions: dimensions grouped together

VisDB Analysis
- table: draw pixels sorted, colored by relevance
- group by attribute or partition by attribute into multiple views

Scagnostics analysis
- scatterplot diagnostics
- scagnostics SPLOM: each point is one original scatterplot

VisDB System
- table: draw pixels sorted, colored by relevance
- group by attribute or partition by attribute into multiple views

VisDB Analysis
- table: draw pixels sorted, colored by relevance
- group by attribute or partition by attribute into multiple views

Ch 15: Case Studies

Graph-Theoretic Scagnostics
- scatterplot diagnostics
- scagnostics SPLOM: each point is one original scatterplot

VisDB Results
- partition into many small regions: dimensions grouped together

VisDB Analysis
- table: draw pixels sorted, colored by relevance
- group by attribute or partition by attribute into multiple views

Scagnostics analysis
- scatterplot diagnostics
- scagnostics SPLOM: each point is one original scatterplot

VisDB System
- table: draw pixels sorted, colored by relevance
- group by attribute or partition by attribute into multiple views

VisDB Analysis
- table: draw pixels sorted, colored by relevance
- group by attribute or partition by attribute into multiple views

Ch 15: Case Studies
InterRing Analysis

System
- **What Data**: Tree.
- **Why Tasks**: Selection, rolloff/rollover, hierarchy editing.
- **How Encode**: Radial, space-filling layout. Color by tree structure.
- **How Facet**: Linked coloring and highlighting.
- **How Reduce**: Embed, distort, multiple face.
- **Scale**: Nodes: hundreds, if labeled; thousands if dense. Levels in tree: dozens.

Using Space: Constellation
- **Data**: multi-level network
 - node: word
 - link: words used in same dictionary definition
 - subgraph: for each definition
 - visual encoding:
 - link connection marks between words
 - link containment marks to indicate subgraph
 - encode probability with hexa spatial position
 - encode source in terms of the word's spatial position
 - aesthetic layout

Using Space: PivotGraph
- **Data**: derived rollup network
 - visual encoding:
 - link connection marks between words
 - link containment marks to indicate subgraph
 - encode probability with hexa spatial position
 - edge crossings
 - cannot easily minimize instances, since position constrained by spatial encoding
 - must preserve graph-theoretic properties
 - violation: single dataset, many visualizations
 - violation: many datasets, same visualization

Visual Exploration of Multivariate Graphs
- **Data**: derived rollup network
 - visual encoding:
 - link connection marks between words
 - link containment marks to indicate subgraph
 - encode probability with hexa spatial position
 - edge crossings
 - cannot easily minimize instances, since position constrained by spatial encoding
 - must preserve graph-theoretic properties
 - violation: single dataset, many visualizations
 - violation: many datasets, same visualization

Visual Exploration of Multivariate Graphs, Martin Wattenberg, CHI 2006.

Topological Fisheye Views
- **Data**: multi-level network
 - node: word
 - link: words used in same dictionary definition
 - subgraph: for each definition
 - visual encoding:
 - hybrid view made from cut through several hierarchy levels

Coarsening requirements
- uniform cluster/metadata size
- match coarse and fine layout geometries
- scalable

Coarsening strategy
- must preserve graph-theoretic properties
- use both topology and geometry
- toposological distance (hops away)
- geometric distance - but not just proximity alone!
- can compact neighborhoods could create new cycles
- derived data: proximity graph

Visual Exploration of Large Graphs, Martin Wattenberg, CHI 2006.
Biomechanical motion design study
- large DB of 3D motion data
 - pigs chewing: high-speed motion at joints, 500 FPS w/ sub-mm accuracy
- goal: to understand functional morphology: relationship between 3D shape of bones and their function

Hybrid graph creation
- cut through coarsening hierarchy to get active nodes
 - animated transitions between states

Final distortion
- geometric distortion for uniform density
 - (coloroded by hierarchy depth just to illustrate algorithm)
- compare to original
 - (compared to simple topologically aware fish-eye distortion)

Example Presentation: Biomechanical Motion

Presentation expectations
- 20 minute time slots for presentations
 - slides required
 - if you're using your laptop, send me by 12pm
 - three goals up to you whether sequential or interleaved
 - explain core technical content to audience
 - analysis with doing what/how framework
 - do scale analysis of data for this system in specific, not for technique in general

Analysis & critique
- paper type dependent
 - required for design studies and technique papers
 - some possible for algorithm papers
 - but more emphasis on presenting algorithm clearly
 - they should play with their own papers
 - but can discuss study design and statistical analysis methods

- please distinguish: their analysis (future work, limitations) from your own thoughts/critiques
 - good to present both

Beyond paper itself
- check for author paper page
 - may have video
 - may have talk slides you could borrow as a base
 - do acknowledge if so!

Slides
- do include both text and images
 - font must be readable from back of room
 - bullet style not sentences
 - use laser pointer judiciously

Technical talks advice
- How To Give An Academic Talk
 - Paul N. Edwards

- How To Give a Great Research Talk
 - Simon L. Peyton Jones, John Hughes, and John Laurie:

- How To Present A Paper
 - Leslie Lamport

- Things I Hope Not To See or Hear at SIGGRAPH
 - Jim Blev

Scientific Presentation Planning
- Example Presentation:
 - face audience, not screen
 - pro tip: your screen left/right matches audience left/right in this configuration
 - hard to follow if parts only visible partly

- Images alone often hard to follow
 - images do not speak for themselves, you must walk us through them
 - text bullets to walk us through your highest-level points
 - hard to follow if parts only visible partly
 - judgement call on text/image ratio, avoid extremes

Style
- figures from paper
 - good idea to use figures from paper, especially screenshots
 - judgement call about how many

- new images
 - you might make new diagrams
 - you might grab other images, especially for background or if comparing to prev work
 - avoid random clip art

- images alone often hard to follow
 - images do not speak for themselves, you must walk us through them

Biomechanical motion design study
- large DB of 3D motion data
 - high-speed motion at joints, 500 FPS w/ sub-mm accuracy
- domain tasks
 - functional morphology: relationship between 3D shape of bones and their function
- abstract tasks
 - trends & anomalies across collection of time-varying spatial data

- pioneering design study integrating infovis+scivis techniques
- let's start with video showing system in action

Candidate pairs: neighbors in original and proximity graph
- derived data: traces/streamers
 - derived data: 3D motion tracers
 - generated x/y data over time
 - streamers
 - shown in 3D views directly
 - populates 2D plots

Multiple linked spatial & non-spatial views
- data: 3D spatial, multiple attributes (cyclic)
 - encode 3D spatial, parallel coordinates, 2D line (ey) plots
- facet: few large multifield views, many small multiples (~100)
 - encode color by trial for window background

- view coordination
 - line in percolated view frame in small multi

3D+2D
- change
 - 3D navigation
 - rotate/translate/zoom
 - filter
 - zoom to small subset of time

Example Presentation: Interactive Coordinated Multiple-View Visualization of Biomechanical Motion Data
Small multiples for overview

• facet: small multiples for overview
 – aggressive/ambitious, 100+ views
• encode: color code window bg by trial
 – full/partial skull
 – streamers
 – simple enough to be usable at low information density

Analysis summary

• what: data
 – 3D spatial, multiple attribs (cyclic)
• what: derived
 – 3D motion traces
 – 3D surface interaction patterns
• facet: linked navigation
 – superimposed overlays in 3D view
• encoding: color coding

Derived data: surface interactions

• what: derived
 – 3D surface interaction patterns
• facet: superimposed overlays in 3D view
• encoding: colored by vertical distance separating teeth (derived surface interactions)

Side by side views demonstrating tooth slide

• facet: linked navigation w/ same 3D viewpoint for all
• encode: colored by vertical distance separating teeth (derived surface interactions)
 – also 3D instantaneous helical axis showing motion of mandible relative to skull

Cluster detection

• identify clusters of motion cycles
 – from combo: 2D xy plots & parcoords
 – show motion itself in 3D view
• facet: superimposed layers
 – foreground/background layers in parcoord view itself

Critique

• many strengths
 – carefully designed with well justified design choices
 – explicitly followed mantra “overview first, zoom and filter, then details-on-demand”
 – sophisticated view coordination
 – tradeoff between strengths of small multiples and overlays, use both
 – enhanced by difficulties of animation for trend analysis
 – derived data tracing paths
• weaknesses/limitations
 – (older paper feels less novel, but must consider context of what was new)

Next time

• deadlines
 – meetings due by Thu Nov 2, 5pm
 – proposals due by Mon Nov 6, 10pm
• next week
 – presentations 1
 – guest lecture from Steve Franconeri