Ch 4: Validation

Tamara Munzner

Department of Computer Science University of British Columbia

CPSC 547, Information Visualization Day 4: 12 January 2017

http://www.cs.ubc.ca/~tmm/courses/547-17

In-class exercise: Abstraction

VAD Ch 4: Analysis: Four Levels for Validation

Four levels of design and validation

- four levels of design problems
 - -different threats to validity at each level

Data/task abstraction ()You're showing them the wrong thing

Wisual encoding/interaction idiom The way you show it doesn't work

Algorithm Your code is too slow

Validation by level

L Domain situation

Observe target users using existing tools

Data/task abstraction

Wisual encoding/interaction idiom Justify design with respect to alternatives

Algorithm

Measure system time/memory Analyze computational complexity

Analyze results qualitatively

Measure human time with lab experiment (*lab study*)

Observe target users after deployment (*field study*)

Measure adoption

- mismatch: cannot show idiom good with system timings
- mismatch: cannot show abstraction good with lab study

5

Directionality & scope

Paper types

- each has different contributions, validation methods, structure
 - -design studies
 - -technique/algorithm
 - -evaluation
 - -model/taxonomy
 - -system

<u>http://ieeevis.org/year/2017/info/call-participation/infovis-paper-types</u>

Paper types: Validation

- design studies
 - -qualitative discussion of result images/videos
 - -abstraction & idiom validation: case studies, field studies, design justification
- technique/algorithm
 - qualitative discussion of result images/videos
 - -algorithm validation for algorithm papers: computational benchmarks
 - -idiom validation for technique papers: controlled experiments
- evaluation
 - -(controlled experiment as primary contribution)
- theory/model/taxonomy
 - -show power: descriptive, generative, evaluative, (predictive)
- system
 - -show power for developer using system

Paper structures

- typical research paper vs expectations for this course final report -more on implementation
 - -novel research contribution not required

http://www.cs.ubc.ca/~tmm/courses/547-17/projectdesc.html#outlines

Reading visualization papers

• one strategy: multiple passes

-title

- -abstract, authors/affiliation
- -flip through, glance at figures, notice structure from section titles
- -skim intro, results/discussion (maybe conclusion)
- -fast read to get big ideas
 - if you don't get something, just keep going
- -second pass to work through details
 - later parts may cast light on earlier parts for badly structured papers
- -third pass to dig deep
 - if it's highly relevant, or you're presenting it to class
- literature search

-decide when to stop reading: is this relevant to my current concerns?

Literature search

- this course: I will give you seed papers during our I on I meetings
- forwards vs backwards search
 - -Google Scholar forward citations!
 - -only a subset of forwards & backwards citations will be what you need
- building up landscape
 - -authors/affiliations will have more signal as you develop expertise

Next time

- Reading
 - -VAD Ch 5: Marks and Channels
 - -39 Studies about Human Perception in 30 Minutes
 - you pick: either read blog post or watch video
- In class
 - -group work: decoding visual encodings

12