Ch 4: Validation

Tamara Munzner
Department of Computer Science
University of British Columbia

CPSC 547, Information Visualization
Day 4: 12 January 2017

http://www.cs.ubc.ca/~tmm/courses/547-17
In-class exercise: Abstraction
VAD Ch 4: Analysis: Four Levels for Validation

1. Domain situation
2. Data/task abstraction
3. Visual encoding/interaction idiom
4. Algorithm
Four levels of design and validation

- four levels of design problems
 - different threats to validity at each level

- **Domain situation**
 - You misunderstood their needs

- **Data/task abstraction**
 - You’re showing them the wrong thing

- **Visual encoding/interaction idiom**
 - The way you show it doesn’t work

- **Algorithm**
 - Your code is too slow
Validation by level

Domain situation
Observe target users using existing tools

Data/task abstraction

Visual encoding/interaction idiom
Justify design with respect to alternatives

Algorithm
Measure system time/memory
Analyze computational complexity

Analyze results qualitatively
Measure human time with lab experiment (lab study)
Observe target users after deployment (field study)

Measure adoption

- mismatch: cannot show idiom good with system timings
- mismatch: cannot show abstraction good with lab study
Directionality & scope

- Domain situation
- Data/task abstraction
- Visual encoding/interaction idiom
- Algorithm

Problem-driven work

Technique-driven work
Paper types

• each has different contributions, validation methods, structure
 – design studies
 – technique/algorithm
 – evaluation
 – model/taxonomy
 – system

Paper types: Validation

• design studies
 – qualitative discussion of result images/videos
 – abstraction & idiom validation: case studies, field studies, design justification

• technique/algorithm
 • qualitative discussion of result images/videos
 – algorithm validation for algorithm papers: computational benchmarks
 – idiom validation for technique papers: controlled experiments

• evaluation
 – (controlled experiment as primary contribution)

• theory/model/taxonomy
 – show power: descriptive, generative, evaluative, (predictive)

• system
 – show power for developer using system
Paper structures

• typical research paper vs expectations for this course final report
 – more on implementation
 – novel research contribution not required

http://www.cs.ubc.ca/~tmm/courses/547-17/projectdesc.html#outlines
Reading visualization papers

• one strategy: multiple passes
 – title
 – abstract, authors/affiliation
 – flip through, glance at figures, notice structure from section titles
 – skim intro, results/discussion (maybe conclusion)
 – fast read to get big ideas
 • if you don’t get something, just keep going
 – second pass to work through details
 • later parts may cast light on earlier parts for badly structured papers
 – third pass to dig deep
 • if it’s highly relevant, or you’re presenting it to class

• literature search
 – decide when to stop reading: is this relevant to my current concerns?
Literature search

• this course: I will give you seed papers during our 1on1 meetings

• forwards vs backwards search
 – Google Scholar forward citations!
 – only a subset of forwards & backwards citations will be what you need

• building up landscape
 – authors/affiliations will have more signal as you develop expertise
Next time

• Reading
 – VAD Ch 5: Marks and Channels
 – 39 Studies about Human Perception in 30 Minutes
 • you pick: either read blog post or watch video

• In class
 – group work: decoding visual encodings