Idiom: streamgraph
- express values
- quantitative attributes
- no keys, only values
- data
- two quant attribs
- mark: points
- channels
- hue + vertical position
- tasks
- find trends, outliers, distribution, correlation, clusters
- scalability

Idiom: bar chart
- one key, one value
- data
- one quant attrib, one quant attrib
- mark: lines
- channels
- length to express quant value
- length: spatial region (one per mark)
- order by quant attrib
- aligned by label (alphabetically), by length attrib (data-driven)
- task
- compare, lookup values
- scalability
- dozens to hundreds of levels for key attrib

Idiom: heatmap
- two keys, one value
- data
- two quant attribs (gene, experimental condition)
- one quant attrib (expression levels)
- mark: area
- aggregate and align in 2D matrix
- indexed by 2 categorical attributes
- channels
- length and color hue
- per row (ordered x-axis)
- task
- part-to-whole relationship
- scalability
- >= 100 rows, 100s of cols, >=50 quant attrib levels

Idiom: scatterplot matrix, parallel coordinates
- scatterplot (SPLOM)
- rectilinear, parallel, radial
- all possible pairs of axes
- scalability
- dozens to hundreds of items
- parallel coordinates
- parallel axes, jagged line representing item
- rectilinear, item as point
- axis ordering is major challenge
- scalability
- dozens of attribs
- hundreds of items

Task: Correlation
- scatterplot matrix
- positive correlation
- diagonal low-to-high
- negative correlation
- diagonal low-to-low
- uncorrelated
- parallel coordinates
- positive correlation
- parallel line segments
- negative correlation
- all segments cross at halfway point
- uncorrelated
- scattered crossings
Protovis Validation
- wide set of old/new app examples
 - expressiveness, effectiveness, scalability
- analysis with cognitive dimensions of notation
 - cleanness of mapping, hidden dependencies
 - role-expressiveness visibility, consistency
 - viscosity; diffuseness, abstraction
 - hard mental operations

Paper: D3
- paper types
 - design studies
 - technique/algorithm
 - evaluation
 - model/taxonomy
 - system
- declarative: what
 - Protovis, D3, ggd2
 - separation of specification from execution
- considerations
 - expressiveness
 - can’t build it
 - efficiency
 - how long will it take?
 - accessibility
 - do I like it now?

InfoVis Reference Model
- conceptual model underlies design of prefaces and many other toolkits
- heavily influenced much of infovis (including nested model)
- aka infovis pipeline, data state model

Declarative toolkits
- imperative toolkits
 - say exactly how to do it
 - familiar programming model
 - OpenGL, preface, ...
- declarative: other possibility
 - just say what to do
 - Protovis, D3

Preprocessing
- infovis toolkit, in Java
- fine-grained building blocks for tailored visualizations
- pros
 - heavily used (previously)
 - very powerful abstractions
 - quickly implement most techniques covered so far
 - no longer arcane
- non-learning curve
- example app: DOITrees Revisited

WebGL/OpenGL
- graphics library
 - pros
 - power and flexibility, complete control for graphics
 - hardware acceleration
 - many language bindings: C++, Java (w/ JOGL)
- cons
 - big learning curve if you don’t know already
 - no VS support: must roll your own everything
 - example app: ThreeJavaplayer (OpenGL)

Orientation limitations
- rectilinear: scalability w/ flexes
 - 3+ axes hard
 - rare in science
 - 4+ impossible
- parallel: unfamiliarity, training time
- radial: perceptual limits
 - angles lower precision than lengths
 - asymmetry between angle and length
- can be exploited

Further reading

PostScript Validation
- rectilinear good for linear vs nonlinear trends
- radial good for cycle patterns

Idioms: normalized stacked bar chart
- task
 - part-to-whole judgements
 - stacked bar chart, normalized so full vert height
 - single stacked bar equivalent to pie
 - high information density requires narrow margins
- pie chart
 - information density requires large circles

Idioms: pie chart, polar area chart
- area marks with angle channel
- accuracy: angles much less accurate than line length
- polar area chart
- area marks with length channel
- more direct analog to bar charts
- data
 - using key: emb. quant value symb
 - part-to-whole judgements

Idioms: radial bar chart, star plot
- radial bar chart
 - radial axes meet at central ring, line mark
- star plot
 - radial axes, meet at central point, line mark
 - rectilinear axes, skewed vertically
 - accuracy
 - less accurate than skewed with rectilinear

Protovis
- declarative infovis toolkit, in JavaScript
- uses layer.js version
- marks with inherited properties
- pros
 - runs in browser
 - matches mark/channel mental model
 - also much more: intersection, geospatial, trees...
- cons
 - not all kinds of operations supported
 - Napvis (2009 course project)

Toolskits
- imperative: how
 - low-level rendering: Processing, OpenGL
 - parameterized visual objects: preface
 - data flow for Flash
- declarative: what
 - Protovis, D3, ggd2
 - separation of specification from execution
 - considerations
 - expressiveness
 - can’t build it
 - efficiency
 - how long will it take?
 - accessibility
 - do I like it now?

Prefuse
- separation: abstract data, visual form, view
- data: tables, networks
- visual form: layout, color, size, ...
- view: multiple renderers

WebGL
- graphics library
 - pros
 - power and flexibility, complete control for graphics
 - hardware acceleration
 - many language bindings: C++, Java (w/ JOGL)
- cons
 - big learning curve if you don’t know already
 - no VS support: must roll your own everything
 - example app: ThreeJavaplayer (OpenGL)

Idioms: glyph maps
- rectilinear good for linear vs nonlinear trends
- radial good for cycle patterns

Idioms: pie chart, polar area chart
- area marks with angle channel
- accuracy: angles much less accurate than line length
- polar area chart
- area marks with length channel
- more direct analog to bar charts
- data
 - using key: emb. quant value symb
 - part-to-whole judgements

Orientation limitations
- rectilinear: scalability w/ flexes
 - 3+ axes hard
 - rare in science
 - 4+ impossible
- parallel: unfamiliarity, training time
- radial: perceptual limits
 - angles lower precision than lengths
 - asymmetry between angle and length
- can be exploited

Further reading

PostScript Validation
- rectilinear good for linear vs nonlinear trends
- radial good for cycle patterns

Idioms: normalized stacked bar chart
- task
 - part-to-whole judgements
 - stacked bar chart, normalized so full vert height
 - single stacked bar equivalent to pie
 - high information density requires narrow margins
- pie chart
 - information density requires large circles

Idioms: pie chart, polar area chart
- area marks with angle channel
- accuracy: angles much less accurate than line length
- polar area chart
- area marks with length channel
- more direct analog to bar charts
- data
 - using key: emb. quant value symb
 - part-to-whole judgements

Idioms: radial bar chart, star plot
- radial bar chart
 - radial axes meet at central ring, line mark
- star plot
 - radial axes, meet at central point, line mark
 - rectilinear axes, skewed vertically
 - accuracy
 - less accurate than skewed with rectilinear
D3
• declarative infovis toolkit, in Javascript
• Protovis meets Document Object Model
• pros
– seamless interoperability with Web
– explicit transforms of scenes with dependency info
– massive user community, many third-party apps/libraries on top of it, lots of docs
• cons
– even more different from traditional programming model
• example apps: many

D3 objectives
– compatibility
– debugging
– performance

D3 related work typology
– document transformers
– graphics libraries
– infovis systems
* general note: all related work sections are a mini-taxonomy!

D3 capabilities
• query-driven selection
– selection: filtered set of elements queries from the current doc
– also partitioning/grouping
– operators act on selections to modify content
– instantaneous or via animated transitions with attribute/style interpolators
• event handlers for interaction
• data binding to scenegraph elements
– data joins bind input data to elements
– enter, update, exit subselections
– sticky: available for subsequent re-selection
– sort, filter

D3 Features
• document transformation as atomic operation
– scene changes vs representation of scenes themselves
– immediate property evaluation semantics
– avoid confusing consequences of delayed evaluation
• validation
– performance benchmarks
– page loads, frame rate
– accessibility
* everybody has voted with their feet by now!

Next Time
• to read
– VAD Ch. 8: Arrange Spatial Data
– Radial Sets: Interactive Visual Analysis of Large Overlapping Sets
 Bilal Alsallakh, Wolfgang Aigner, Silvia Miksch, and Helwig Hauser.
* paper type: technique