ViDX: Visual Diagnostics of Assembly Line Performance in Smart Factories

Panpan Xu, Honghui Mei, Liu Ren, and Wei Chen
Bosch Research North America, Zhejiang University. 2016
Cybersyn, Chile 1971–1973

Distributed decision support system designed by British operations scientist Stafford Beer.

- An operations room,
- Economic simulator,
- Custom software to check factory performance,
- Using national network of telex.

Cybersyn opsroom image credit Gui Bonsiepe
SCADA: Supervisory control and data acquisition

● Industrial processes
Manufacturing, Process control, power generation, fabrication.

● Infrastructure processes
Oil and gas pipelines, electrical power transmission, water treatment.

● Facility processes
Monitor and control heating, ventilation air conditioning systems (HVAC), and energy consumption.

http://www.promotic.eu
Industry 4.0

<table>
<thead>
<tr>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanization, water power</td>
<td>Mass production, assembly line, electricity</td>
<td>Computer and automation</td>
<td>Cyber Physical Systems</td>
</tr>
</tbody>
</table>

credit "Christoph Roser at http://www.allaboutlean.com"
Every second matters!

Cisco $1594 per second
Samsung $1540 per second
Nokia $941 per second

Ford — Kansas City Assembly Plant, Claycomo, MO
460,338 cars per year

Hyundai — Hyundai Motor Manufacturing Alabama, Montgomery, AL
342,162 cars per year

Nissan — Nissan North America, Smyrna, TN
333,392 cars per year

1 year = 525,600 minute

http://www.automobilemag.com/
www.businessinsider.com/visualizing-how-much-big-tech-companies-make-2014-4
Why performance monitoring?

- **TPM:** Temporal productive maintenance
- **OEE:** Overall equipment effectiveness

<table>
<thead>
<tr>
<th>Category</th>
<th>OEE Loss</th>
<th>Example</th>
</tr>
</thead>
</table>
| Breakdowns          | Availability | - Tooling failures
                   |                                      | - General breakdown
                   |                                      | - Unplanned maintenance
                   |                                      | - Equipment failure
| Setup Adjustment    | Availability | - Material shortages
                   |                                      | - Setup / Changeovers
| Small Stop          | Performance  | - Cleaning / Checking
                   |                                      | - Obstructed Product Flow / Component Jams
                   |                                      | - Misfeeds
                   |                                      | - Sensor Blocked / Delivery Blocked
| Reduced Speed       | Performance  | - Operator inefficiency
                   |                                      | - Rough running / Equipment wear
                   |                                      | - Under nameplate capacity / under design capacity
| Startup Rejects     | Quality     | - Incorrect Assembly
                   |                                      | - Scrap / Rework
                   |                                      | - In-Process Damage / In-Process Expiration
| Production Rejects  | Quality     | - Scrap / Rework
                   |                                      | - In-Process Damage / In-Process Expiration
                   |                                      | - Incorrect Assembly

6
Gantt chart

Gantt charts illustrate the start and finish dates of the terminal elements and summary elements of a project.

Photo courtesy: dreamfactory.com
Contribution of ViDX

Visual exploration for:

- Troubleshooting
- Process optimization
- Decision making

Identify inefficiencies and locate abnormalities in:

- Historical data.
- Realtime assembly line performance.

Requirements gathered through discussion with Managers and Operators?
REQUIREMENTS FOR HISTORICAL DATA

**R1**: Facilitate the detection of abnormal processes.

**R2**: Inefficiencies and troubleshooting.

**R3**: Engaging users to detect outlier process interactively.

**R4**: Support predictive analysis.
REQUIREMENTS FOR REAL-TIME SYSTEM

R5: Highlight abnormalities in real time.

R6: Visual metaphors.

R7: Interactive exploration of large amount of process data (thousands of products everyday).

R8: Visually indicating the problematic components in 3D model!!
Assembly line as a directed acyclic graph (DAG)

No error! Quality Control!
How about repeating operations
Extended Marey’s graph

1885 as a visual depiction of train schedules.

- Train speeds,
- Dwell times,
- Directions of travel,
- Service frequency,
- Stop spacing
Anomaly detection

1. Steak of efficient process

2. Halt of entire assembly line

3. Partial halt of assembly line
Quantiles brush and Sample brush

Interactive outlier detection
Aggregation

Visualizing larger number of processes in parallel coordinates [Munzner, Tamara. Visualization analysis and design. CRC Press, 2014, pp 165]
System architecture and implementation
Case study

Detect inefficiencies and troubleshooting.

● Schedule break.

● Stop and restart for a few times before operating smoothly.
Case study

- Several products were postponed.
- Other products have to wait.
Fault detection

Fault 'weld position 6 velocity upper limit exceeded'

The entire assembly line stopped
Real-time monitoring

Radial graph proposed by target users.

Users asked for three layers of rotating concentric circles.

Not effective

1. Ongoing process (light blue)
2. Length encode the time to finish the process
3. Fault occurs

New design
Real time performance with radial graph

1. Multiple products on the same station not moved timely.
2. A fault occurred.
<table>
<thead>
<tr>
<th>What: Data</th>
<th>● Table of workstations and product information: many value attributes. E.g Serial time values, Error and workstation’s DAG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Why: Task</td>
<td>● Find trends, outliers, extreme, exploration and anomaly detection.</td>
</tr>
</tbody>
</table>
| How: Encode | ● Marey’s graph and parallel layouts: horizontal spatial position used to express time on each station. Vertical traces shows the products.  
● Radial layout: Line length. |
| How: Reduce | ● Item aggregation.  
● Filtering. |
| Scale | Dozens along vertical axis (Workstations) and thousands to millions?! polylines (products). |
Limitations

- Data scalability:
  Site managers are willing to immediately know the abnormalities in each day in calendar visualization

- Longer time span in Marey’s graph:
  In displays with limited width, traces will become vertical lines

- Subprocess and parallel processes are overlaid
  Increasing the complexity of manufacturing process can cause visual clutter.
Suggestion

User can change the distance between stations based on average process time.

- Comparing lines with different length and slope (tilt).

www.toshiba.co.jp
Critiques

- Every operation is trackable not every product.

There is no jump in production line and product will be stored in case of failure. FIFO system can cause overall delay and disables abnormalities detection techniques.

Several products are postponed on station 150.
Critiques

The rationale behind using the radial graph is not clear! Why not rectilinear. Maybe to show the cyclic pattern!!!

- Divided into same size sectors in radial graph.

- The angle channel is less accurately perceived than rectilinear spatial position channel. [Munzner, Tamara. *Visualization analysis and design*. CRC Press, 2014. pp 166]
Critiques

No evaluation with existing real time monitoring platform
Conclusion

- Application of Marey’s graph in this domain was very effective.

- Two anomaly detection processes were suggested for outlier detection.

- System was tested with real data and they ran case studies for both historical data and real-time data.

- User interviews shows promising results but no evaluation.
Future directions

1. Deployment in real production line

2. Improve scalability

3. The occurrence of outliers in composite events

My suggestion:

- Extend the visualization to group or uncountable products

- Add indicators for sensors and their values in real time system and controllability for stations