A-tSNE
Approximated and user steerable for progressive visual analytics

Nicola Pezzotti et al.
Presented by: Lovedeep Gondara

March 9, 2017
Outline

1 Introduction
 - High dimensional data vis
 - tSNE
 - Barnes-Hut SNE

2 A-tSNE
 - Introduction
 - Interactive analysis
 - Case studies

3 Critique
1. Introduction
 - High dimensional data vis
 - tSNE
 - Barnes-Hut SNE

2. A-tSNE
 - Introduction
 - Interactive analysis
 - Case studies

3. Critique
High dimensional data

- Most real world datasets are high dimensional.
- High dimensional data vis is hard.
- Dimensionality reduction to the rescue.
1. Introduction
 - High dimensional data vis
 - tSNE
 - Barnes-Hut SNE

2. A-tSNE
 - Introduction
 - Interactive analysis
 - Case studies

3. Critique
tSNE

Introduction

- A tool for dimensionality reduction/vis of high dimensional data.
- Converts similarities between data points in high dimensional space to joint probability distribution P.
- Computes a joint probability distribution Q, describing similarity in low dimensional space.
- Goal: Represent P faithfully using Q.
tSNE

Introduction

- Minimize Kullback-Leibler divergence between P and Q.
- Use gradient descent for minimization.
- Each point attracts or repels all other points with a force F.
Outline

1. Introduction
 - High dimensional data vis
 - tSNE
 - Barnes-Hut SNE

2. A-tSNE
 - Introduction
 - Interactive analysis
 - Case studies

3. Critique

Nicola Pezzotti et al. Presented by: Lovedee
A-tSNE March 9, 2017 8 / 25
Barnes-Hut SNE

- Original tSNE uses brute force approach for F.
- Computation and memory complexity of $O(n^2)$.
- Barnes-Hut SNE is an evolution of tSNE.
Barnes-Hut SNE

- Uses two approximations.
- Approximation 1: Similarities between data points are computed by only taking set of nearest neighbours N.
- Reduces computational and memory complexity to $O(N \log(N))$ and $O(N)$ respectively.
Outline

1. Introduction
 - High dimensional data vis
 - tSNE
 - Barnes-Hut SNE

2. A-tSNE
 - Introduction
 - Interactive analysis
 - Case studies

3. Critique

Nicola Pezzotti et al. Presented by: Lovedee

A-tSNE

March 9, 2017
Evolution of BH-SNE.

Uses approximations to generate useful intermediate results.

Approximation defined by user.
A-tSNE

Introduction

Figure: Progressive visual analytics using tSNE

Figure: Progressive visual analytics using A-tSNE
A-tSNE

Introduction

- Improves BH-SNE using approximated KNN computations for approximated P.
- Using a precision parameter ρ, describe the average percentage of points in approximated neighbourhood that belong to the exact neighbourhood.
- ρ is user defined, large values of ρ means better approximations but more computational overhead.
- These approximations make A-tSNE computationally steerable.
A-tSNE

Introduction

Figure: BH-SNE: 3191.8 s

Figure: A-tSNE ($\rho = 0.23$): 20.4 s

Figure: A-tSNE ($\rho = 0.34$): 30.1 s

Figure: A-tSNE ($\rho = 0.07$): 13.0 s
Outline

1 Introduction
 - High dimensional data vis
 - tSNE
 - Barnes-Hut SNE

2 A-tSNE
 - Introduction
 - Interactive analysis
 - Case studies

3 Critique
User driven refinement

- **User selection**: Select a subset of points for immediate refinement.
- **Breadth first search**: If only a few points are selected, include the neighbourhoods.
- **Density based refinement**: Global overview, user defined selection or whole dataset.
Density based: Simple points increase clutter, use KDE.

Visualizing approximations: Precision of high dimensional similarities is gradually refined until exact, requested precision can be visualized while refinement is ongoing.

Use magic lens to show approximations
A-tSNE

Data manipulation

- Inserting points
- Deleting points
- Dimensionality modification
Figure: Interface
Outline

1 Introduction
 - High dimensional data vis
 - tSNE
 - Barnes-Hut SNE

2 A-tSNE
 - Introduction
 - Interactive analysis
 - Case studies

3 Critique
A-tSNE
Mouse brain gene expression

Figure: Analysis of the gene expression in the mouse brain using A-tSNE
A-tSNE

Real-time analysis of high-dimensional streams

- Lying

Figure: Initial embedding

Figure: Evolution of (a)

- Unclassified

Figure: New cluster indicates the creation of a set of different readings

Figure: The cluster that identifies miscalibrated readings is removed
Critique

- Enhanced performance.
- User selective refinement.
- Too many moving parts.
- Not sure if all are helpful.
Pezotti et al. 2016
Approximated and user steerable tsne for progressive visual analytics.