Information Visualization

Intro

Tamara Munzner
Department of Computer Science
University of British Columbia

3 January 2017
Audience

• no prerequisites
 – many areas helpful but not required
 • human-computer interaction, computer graphics, cognitive psychology, graphic design,
 algorithms, machine learning, statistics, ...

• open to non-CS people
 – if no programming background, can do analysis or survey project

• open to advanced undergrads
 – talk to me

• open to informal auditors
 – some or all days of readings/discussion, as you like
 • you’ll get out of it what you put into it...
Class time

• weeks 1-9: Participation [30%]
 – before class:
 • you read chapter, sometimes also paper
 • you submit comments before class
 – during class:
 • sometimes I lecture briefly and we discuss
 • sometimes in-class group work
 • Jan 24 is TBD (possibility that class cancelled)

• weeks 10-13: Presentations [20%]
 – before one of the classes: you each read paper on topic of your choice
 – during that class: you present it to everybody else (~10 min)
Readings

• textbook
 • http://www.cs.ubc.ca/~tmm/vadbook/
 – library has multiple ebook copies
 – to buy yourself, cheapest is amazon.com

• papers
 – links posted on course page
 – if DL links, use library EZproxy from off campus

• readings posted by one week before class

• each session: always one chapter, sometimes one more paper
Participation [30%]

• written comments on reading in advance (18% of total mark)
 – due 1:30pm (2 hrs before class)
 – 1 for each reading
 – bring printout or laptop with you, springboard for discussion

• discussion/participation in class (12% of total mark)

• attendance expected
 – tell me in advance if you’ll miss class (and why)
 – question credit still possible if submitted in advance
 – tell when you recover if you were ill
Reading comments

• comments or questions

• fine to be less formal than written report
 – correct grammar and spelling still expected
 – be concise: a few sentences is good, one paragraph max!

• should be thoughtful, show you’ve read and reflected
 – poor to ask something trivial to look up
 – ok to ask for clarification of genuinely confusing section
 – good to show that you’re thinking carefully about what you read
 – great to point out something that I haven’t seen before

• examples on http://www.cs.ubc.ca/~tmm/courses/infovis/structure.html
Projects [50%]

• solo, or group of 2, or group of 3
 – groups highly encouraged; amount of work commensurate with group size

• stages
 – pitches (oral, in class): Thu, Feb 16
 – meetings (individual, outside class): through Fri, Mar 3, 5pm
 – proposals (written): Mon, Mar 6, 5pm
 – peer project reviews (in class): Mar 21, Apr 4
 – interim writeup including related work (written): Mar 31, 5pm
 – final presentations (oral): Apr 25 1-5pm
 – final reports (written): Apr 28, 5pm

• resources
 – more on datasets and tools later
Projects

• programming
 – common case
 – note that I will only consider supervising students who do programming projects
 – three types
 • problem-driven design studies (target specific task/data)
 • technique-driven (explore design choice space for encoding or interaction idiom)
 • algorithm implementation (as described in previous paper)

• analysis
 – use existing tools on dataset
 – detailed domain survey
 – particularly suitable for non-CS students

• survey
 – very detailed domain survey
 – particularly suitable for non-CS students
Projects: Design studies

• BYOD (Bring Your Own Data)
 – you have your own data to analyze
 – your thesis/research topic (very common case)
 – dovetail with another course (sometime possible but timing can be difficult)

• FDOI (Find Data Of Interest)
 – many existing datasets, see resource page to get started
 • http://www.cs.ubc.ca/group/infovis/resources.shtml
Presentations [20%]

• last several weeks of class
• present, analyze, and critique one paper
 – send me topic choices by Feb 17, I will assign papers accordingly
• expectations
 – slides required
 – summary/description important, but also your own thoughts
 • analysis according to book framework
 • critique of strengths and weaknesses
• timing
 – exact times TBD depending on enrollment
 – likely around 10 minutes each
• topics at http://www.cs.ubc.ca/~tmm/courses/infovis/presentations.html
Marking

• 50% Project
 – 2% Pitches
 – 10% Proposal
 – 4% Interim Writeups
 – 4% Project Peer Reviews
 – 12% Final Presentation
 – 18% Final Report
 – 50% Content

• 20% Presentations
 – 75% Content: Summary 50%, Analysis 25%, Critique 25%
 – 25% Delivery: Presentation Style 50%, Slide Quality 50%

• 30% Participation
 – 60% Written Questions
 – 40% In-Class Discussion/Exercises

• marking by buckets
 – great 100%
 – good 89%
 – ok 78%
 – poor 67%
 – zero 0%
Course goals

• twofold goal
 – specific: teach you some infovis
 – generic: teach you how to be a better researcher

• feedback through detailed written comments on writing and presenting
 – both content and style
 – at level of paper review for your final project
 – goal: within a week or so

• fast marking for reading questions
 – great/good/ok/poor/zero
 – goal: turn around before next class
 • one week at most
Finding me

• email is the best way to reach me: tmm@cs.ubc.ca
• office hours Tue right after class (5-6pm)
 –or by appointment
• X661 (X-Wing of ICICS/CS bldg)

• course page is font of all information
 –don’t forget to refresh, frequent updates
 –http://www.cs.ubc.ca/~tmm/courses/547-17
Now: In-class design exercise, in small groups

- Five time-series scenarios
 - A: every 5 min, duration 1 year, 1 thing: building occupancy rates
 - B: every 5 min, 1 year, 2 things: currency values (exchange rate)
 - C: several years and several things: 5 years, 10 currencies
 - D: 1 year, many things: CPU load across 1000 machines
 - E: 1 year, several parameters, many things: 10 params on each of 1000 machines

- Small-group exercise: 15-20 min
 - one group per table (4-5 people/group)
 - discuss/sketch possible visual encodings appropriate for your assigned scenario

- Reportback: 20-30 min
 - 3 min from each group

- Design space examples/discussion: 15-20 min
Next Time

• to read
 – VAD book, Ch 1: What's Vis, and Why Do It?
 – VAD book, Ch 2: What: Data Abstraction