Visual Encoding of Dissimilarity Data via Topology-Preserving Map Deformation*

CPSC 547: Information Visualization

Felix Grund

*Cartography

We love maps!

But when it comes to science...

Let's split the title...

"We visualize things (that are different) by changing a map without losing regional structure."

Background (1) – Cartograms

- Deformation of map such that
 - geographic regions correspond to quantitative value
 - but adjacencies and shapes are preserved
- Have been used to show a variety of attributes
- Create flashy juxtaposition between geography and data

Background (2) – Cartogram Example

Background (3) – Travel Time Maps

- Focus on special case of transportation network (locations/distances)
- Deform map so travel times become edge lengths

From: A new algorithm for distance cartogram construction (Cited paper [35])
Published in: International Journal of Geographical Information Science (ISSN: 1365-8816)

Contribution

(F)

- New map deformation technique that
 - preserves topology
 - balances preserving geographic shape with conveying data
- Instead of simple scalar values and regions (cartogram)
 - take a complete weighted graph between locations
 - move the locations such that distance corresponds to weights
 - but <u>only as closely as possible</u>
- Encode <u>dissimilarity</u> between locations as edge weights
 - distance in deformed map then related to data dissimilarity
 - enable to compare distances between locations and attributes
- Overcome limitations of deformation with visual overlays
- Deformation in response to interaction (with good performance)

First impression...

House price increases in Australia 2013

All from paper Fig. 1

Technique:

Topology preserving multidimensional scaling

Background: Multidimensional Scaling (MDS)

- Visualizes level of (dis-)similarity of individual cases of a dataset
- Achieved by minimizing stress function over positions of data points
- Plot with "minimal stress": distance between points is proportional to dissimilarity

MDS applied to voting patterns in US house of representatives - blue: democrats, red: republicans (Source: Wikipedia)

House price increases in Australia 2013

Paper Figs. 2a + 2b

Approach

- MDS of data points in deformable mesh
- Original map image is mapped onto mesh incrementally through transformations
- Mesh may be deformed
- Constraint: mesh and data vertices cannot pass through mesh edges
- 3 steps
 - 1. Deform map to follow points (MDS)
 - 2. Preserve map topology
 - 3. Enable interaction by dynamic mesh modification

Step 1: deform map to follow points

- Map with triangular mesh overlay
 - Edges of triangles: *Delaunay triangulation* (?)
 - "no point in P is inside the circumcircle of any triangle" (Wikipedia)
- Vertices: geographic locations + "helper points"
 - add bendpoints
 - regularize and preserve topology
- New stress function with helper points to model both:
 - degree of fit of the data points to their ideal separation
 - degree of deformation of the mesh

Step 1: deform map to follow points (cont.)

Problem: points are different from topology => map is distorted beyond recognition

Step 2: preserve mesh topology

- Idea: preserve orientation of triangles in the mesh
- Constraint in the deformation:
 - No inverted triangles
 - Minimum height for triangles
- Algorithm for stress reduction by iteratively refining triangles
 - Start with the original deformation and run through all triangles
 - Correct triangle's orientation to meet constraints with minimal change
 - Repeat until satisfying overall configuration is found

Step 2: preserve mesh topology (cont.)

- Result: MDS with topology constraint
- Isolines highlight similar areas

Step 3: dynamic mesh modification

- Challenge: interactive setting
 - Impossible to predict where points will move
- Solution: update mesh while stress reduction algorithm is running
 - Options: adding/removing points vs. changing edges
 - Decision: changing edges is sufficient (edge flipping)
 - After edge flip: minimal height constraint not violated and points can move
- Again: preserve topology!
 - by constraints on flips

Paper Fig. 5

Visual Design

- Deformation: <u>incomplete</u> representation of complex dissimilarities
- Solution: combine map deformation with overlays
 - Show dissimilarities with visual links
 - Show errors in map distance using error glyphs

Paper Fig. 7

Visual Design Part 1: Visual Links

- Goal: convey dissimilarity and geographical data
- Solution: visual links
- Challenge: maps are dense representation and links should
 - be distinguishable from background map
 - limit clutter of the background map
 - encode weight
 - encode directionality

Visual Design Part 1: Visual Links (cont.)

Decisions:

- Grayscale: distinguishable from background map
- Thin lines and pencil-like marks: avoid clutter
- Weights: thickness
- Directions: tapered links

Paper Fig. 8a

Visual Design Part 1: Visual Links (cont.)

- Problem: not all links can be shown due to clutter
- Solution: Glyphs highlighting difference betw. dissimilarty and spatial separation
- Decisions:
 - Look and feel of error bars
 - Discrete over continuous (three bins)
 - Symbols existent in cartography

Paper Fig. 8d

Visual Design Part 2: Deforming the Map

- Map deformation shows dissimilarities with fewer visual overlays
- Problem: required background knowledge on map
- Solution: modify map design to convey deformation
 - Grid cells are enlarged or shrunk
 - Link current position with previous position

Visual Design Part 2: Deforming the Map (cont.)

- Interaction
 - Selection of nodes
 - Filtering of links
 - Switch from general deformed view to centered view with selected points
 - Change stress threshold to show and hide glyphs
 - Config. panel for different encoding combinations => enable comparisons
- Redrawing after each iteration of algorithm

Application Case Studies

- Rail travel-times in the UK
- Socioeconomic data in the UK
- Power grid data in Australia

Demo

Technique Evaluation

- Measure performance: indicate responsiveness for interactive usage
- Datasets: house prices, power grid, socioeconomic data
 - Applied with different grid sizes
- Techniques: unconstrained, constrained, constrained dynamic mesh
- Results:
 - Dynamic mesh is most effective in reducing stress and improve performance (with constraints on grid size)
 - Summary: algorithm is fast enough to compute deformation with interaction
 - Limitation: 30 data points at most

What – Why – How

- What (data):
 - Geographical maps (with arbitrary encoding already present)
 - Arbitrary (dis)similarity data associated with locations
- What (derived):
 - Complete weighted graph
- Why (tasks):
 - Highlight (dis)similarity between locations in terms of underlying attributes
- How (encode):
 - Map deformation
 - Nodes for locations and weighted, directed graph edges (connection marks)
 - Discrete error glyphs on edges
 - Deformed grid
 - Links indicating location before deformation
 - Isolines for areas of high similarity

What – Why – How (cont.)

- How (reduce):
 - Selection of nodes
 - Filtering of nodes
 - Change stress threshold
- How (facet):
 - Switch from general deformed view to centered view with selected points
- How (manipulate):
 - Change encoding combinations
- (some other encoding techniques in case studies)
- Scale: max 30 data points (authors stay vague)

Good

- Novel compromise of both deforming and preserving topology
 - Both are important!
- Novel ability of animation associated with map deformation
 - Algorithm and its performance with animation are impressive
- Good example how one technique can be enriched by another
 - Map deformation + visual overlays
- Visualization techniques are well explained and justified
 - Authors did a lot of research and consulted experts

Bad

- ⊗ Hard to read ⊗
 - Requires a lot of background knowledge
 - Some terms remain unexplained and unreferenced
- Encoding too many things
 - Even though authors explain how to avoid clutter, we still find it
- Visualization is hard to interpret
 - Also requires background knowledge
 - Even with the demo it's hard to understand what this is about
- Authors remain vague in scalability
 - Evaluation: 30 data points max
 - Theory vs. practical
- Suddenly additional encoding technique (e.g. aggregate data points) explained in case studies

Thank you.