Information Visualization

Visualization Motivation,
What: Data Abstraction

Tamara Munzner
Department of Computer Science
University of British Columbia

5 January 2017

http://www.cs.ubc.ca/~tmm/courses/547-17
Before: In-class design exercise, in small groups

• Five time-series scenarios
 – A: every 5 min, duration 1 year, 1 thing: building occupancy rates
 – B: every 5 min, 1 year, 2 things: currency values (exchange rate)
 – C: several years and several things: 5 years, 10 currencies
 – D: 1 year, many things: CPU load across 1000 machines
 – E: 1 year, several parameters, many things: 10 params on each of 1000 machines

• Small-group exercise: 15-20 min
 – one group per table (3-4 people/group, 10 groups)
 – discuss/sketch possible visual encodings appropriate for your assigned scenario

• Reportback: 20-30 min
 – 3 min from each group

• Design space examples/discussion: 15-20 min
Case A: 3D Approach (Not Recommended)

- extruded curves: detailed comparisons impossible

[Cluster and Calendar based Visualization of Time Series Data. van Wijk and van Selow, Proc. InfoVis 99.]
Case A: Cluster-Calendar Solution

- derived data: cluster hierarchy
- juxtapose multiple views: calendar, superimposed 2D curves

[Cluster and Calendar based Visualization of Time Series Data. van Wijk and van Selow, Proc. InfoVis 99.]
Case B: Stack Zooming

https://youtu.be/dK0De4XPm5Y

Case C: ChronoLenses

https://youtu.be/k7pl8ikczqk
Case D: RankExplorer

https://youtu.be/rdgn1qcZ2A4
Case E: LiveRAC video

http://youtu.be/ld0c3H0VSkw

Ch 1. What’s Vis, and Why Do It?
Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.

Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods.

• human in the loop needs the details
 – doesn't know exactly what questions to ask in advance
 – longterm exploratory analysis
 – presentation of known results
 – stepping stone towards automation: refining, trustbuilding

• external representation: perception vs cognition

• intended task, measurable definitions of effectiveness
Analysis: What, why, and how

- **what** is shown?
 - data abstraction

- **why** is the user looking at it?
 - task abstraction

- **how** is it shown?
 - idiom: visual encoding and interaction

- abstract vocabulary avoids domain-specific terms
 - translation process iterative, tricky

- what-why-how analysis framework as scaffold to think systematically about design space
How?

What?
- **Encode**
 - **Arrange**
 - Express
 - Separate
 - **Order**
 - Align
 - **Use**
 ![Map](image)

Why?
- **Manipulate**
 - **Change**
 ![Change](image)
 - **Select**
 ![Select](image)
 - **Navigate**
 ![Navigate](image)

How?
- **Facet**
 - **Juxtapose**
 ![Juxtapose](image)
 - **Partition**
 ![Partition](image)
 - **Superimpose**
 ![Superimpose](image)

Reduce
- **Filter**
 ![Filter](image)
- **Aggregate**
 ![Aggregate](image)
- **Embed**
 ![Embed](image)

Details
- **Encode**
 - **Map**
 - from *categorical* and *ordered* attributes
 - **Color**
 - Hue
 - Saturation
 - Luminance
 - **Size, Angle, Curvature, ...**
 - **Shape**
 - ![Shape](image)
 - **Motion**
 - *Direction, Rate, Frequency, ...*
VAD Ch 2: Data Abstraction

What?

Datasets

- Data Types
 - Items
 - Attributes
 - Links
 - Positions
 - Grids

- Data and Dataset Types
 - Tables
 - Networks & Trees
 - Items (nodes)
 - Attributes
 - Fields
 - Grids
 - Positions
 - Geometry
 - Items
 - Clusters, Sets, Lists
 - Items

Attributes

- Attribute Types
 - Categorical
 - Ordered
 - Ordinal
 - Quantitative

- Ordering Direction
 - Sequential
 - Diverging
 - Cyclic

Why?

How?

[VAD Fig 2.1]
Ch 2. What: Data Abstraction
Three major datatypes

Dataset Types

<table>
<thead>
<tr>
<th>Tables</th>
<th>Networks</th>
<th>Spatial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attributes (columns)</td>
<td>Fields (Continuous)</td>
<td>Geometry (Spatial)</td>
</tr>
<tr>
<td>Items (rows)</td>
<td>Grid of positions</td>
<td>Position</td>
</tr>
<tr>
<td>Cell containing value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node (item)</td>
<td>Link</td>
<td></td>
</tr>
<tr>
<td>Tree</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Multidimensional Table**
- **Networks**
- **Spatial**

- **Trees**

- **Visualization vs computer graphics**
 - geometry is design decision
Attribute types

- **Attribute Types**
- **Categorical**
- **Ordered**
 - **Ordinal**
 - **Quantitative**

- **Ordering Direction**
- **Sequential**
- **Diverging**
- **Cyclic**
Dataset and data types

Data and Dataset Types

<table>
<thead>
<tr>
<th>Tables</th>
<th>Networks & Trees</th>
<th>Fields</th>
<th>Geometry</th>
<th>Clusters, Sets, Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>Items</td>
<td>Items (nodes)</td>
<td>Grids</td>
<td>Items</td>
<td>Items</td>
</tr>
<tr>
<td>Attributes</td>
<td>Links</td>
<td>Positions</td>
<td>Positions</td>
<td></td>
</tr>
<tr>
<td>Attributes</td>
<td>Attributes</td>
<td>Attributes</td>
<td>Attributes</td>
<td></td>
</tr>
</tbody>
</table>

Data Types

- Items
- Attributes
- Links
- Positions
- Grids

Dataset Availability

- Static
- Dynamic
Further reading: Articles

- The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. Ben Shneiderman, Proc. 1996 IEEE Visual Languages

Further reading: Books

 – Chap 2: Data Abstraction

• Information Visualization: Using Vision to Think. Stuart Card, Jock Mackinlay, and Ben Shneiderman.
 – Chap 1

• Visualization of Time-Oriented Data. Wolfgang Aigner, Silvia Miksch, Heidrun Schumann, Chris Tominski. Springer 2011.
Next Time

• to read
 – VAD book, Ch 3: Why: Task Abstraction
 – paper: Design Study Methodology