Ch 10: Color

Decomposing color
• first rule of color: do not talk about color!
 – color is confusing if treated as monolithic
• decompose into three channels
 – ordered can show magnitude
 – luminance
 – saturation
categorical can show identity
• hue
• channels have different properties
 – what they convey directly to perceptual system
 – how much they can convey: how many discriminable bins can we use?

Designing for color deficiency: Check with simulator

Color spaces
• RGB: poor for encoding
 – HSL: better, but beware
 – lightness = luminance

Designing for color deficiency: Avoid encoding by hue alone

Chroma
Saturation
Luminance
Hue

Spectral sensitivity

Opponent color and color deficiency
• perceptual processing before optic nerve
 – one achromatic luminance channel L
 – intrinsic perceptual ordering
 – need luminance contrast for edge detection
two chroma channels R-G and B-Y axis
“color blind” if one chroma axis has degraded acuity
10% of men are red/green color deficient
1.5% of women are red/green deficient

Color deficiency: Reduces color to 2 dimensions

Bezold Effect: Outlines matter
• color constancy: simultaneous contrast effect

Designing for color deficiency: Blue-Orange is safe

Color/Lightness constancy: Illumination conditions

Color/Lightness constancy: Illumination conditions

Colormaps
• Categorical
 – ordered
 – Sequential
 – Diverging
• Sequential
• Compartmental

Idiom design choices: Encode

Challenges of Color
• what is wrong with this picture!

Opponent color and color deficiency

Color deficiency: Reduces color to 2 dimensions

Bezold Effect: Outlines matter
• color constancy: simultaneous contrast effect

Opponent color and color deficiency
Colormaps

- Categorical
- Sequential
- Diverging
- Bivariate

Ordered color: Rainbow is poor default

- problems
 - perceptually unordered
 - perceptually nonlinear
- benefits
 - fine-grained structure visible and nameable
- alternatives
 - large-scale structure fewer hues

ColorBrewer

- http://www.colorbrewer2.org
 - saturation and area examples: size affects salience!

Viridis

- colorful, perceptually uniform, colorblind-safe, monotonically increasing luminance

Map other channels

- size
 - length accurate, 2D area ok, 3D volume poor
- angle
 - nonlinear accuracy
- shape
 - complex combination of lower-level primitives
- motion
 - highly separable against static

Categorical color: limited number of discriminable bins

- human perception built on relative comparisons
 - great if color contiguous
 - surprisingly bad for absolute comparisons
- noncontiguous small regions of color
 - fewer bins than you want
 - rule of thumb: 6-12 bins, including background and highlights

Colormaps

- Categorical
- Sequential
- Diverging
- Bivariate

Next Time

- to read
 - VAD Ch. 11: Manipulate View

Be Worried About Color? Treinish and Rogowitz 1998.

viridis/vignettes/intro-to-viridis.html
