Evaluation of Graph Sampling: A Visualization Perspective

A little different, right?

Similar quantitative statistics

Very different perceptually

Problem: Analyzing large graphs

Large graphs are difficult to analyze even with state of the art techniques on high-end clusters

Can reach hundreds of millions, or even billions of nodes

One Solution: Graph sampling	One more problem: How to sample?	Lots of solutions!	What? Why? How?
Sampled graph often more desirable than small chunk of original graph Makes analysis on large graphs tractable Can be used for preliminary evaluation	What is the best way to sample? Should we pick nodes at random? Traverse the graph? 6	This paper focusses on five of the most widely used: Random Node (RN) Random Edge Node (REN) Random Walk (RW) Random Jump (RJ)	What: Node-link unweighted networks (N: ~1000-20000) Why: Summarize topology How: RN, REN, RW, RJ, FF 8
Key Question: Perceptual Quality	Important Perceptual Qualities	Important Perceptual Qualities	Important Perceptual Qualities
What are the main factors that affect perceptual quality in a sampled graph? How are those factors affected by the five sampling strategies?	Three identified:	Three identified Coverage Area	Three identified Coverage Area Cluster Quality
9	10		12
Important Perceptual Qualities	Graphs used: BA and Sah	How did they fare: Coverage Area	How did they fare: Cluster Quality
Three identified Coverage Area Cluster Quality High Degree Nodes, and their preservation In addition, 20% sampling rate was selected as a fair	Guaranteed cluster networks generated by Sah et al.'s model T4	Best: Random Edge Node and Random Jump Do not get trapped, but are not as sparse as Random Node Random Walk is poorest May not explore anywhere near the whole graph, leaving out entire sections Researchers expected Random Node to be promyed Torest Fire and Random Walk do better in less modular	Best: Random Edge Node and Random Jump perform best Poorest: Random Node and Forest Fire Random Walk depends on graph modularity, but not graph size

How did they fare: High Degree Nodes

17

- Random Walk to preserve high-degree nodes
- Random Jump or Random Edge Node to preserve global structure and cluster quality

Almost never use Random Node

Strengths

18

Substantial thought given to experiment design and neutralizing potential confounds

Depth of work: Pilot study, three formal studies

Useful, well explained, and nuanced recommendations

Weaknesses and limitations

Does not explore the laying out of graphs post-sampling. Only used computer science students/graduates in their studies

Single sampling rate was tested

19

Potential future work

Improve metrics based on human feedback

- Perceptual quality of graph abstraction, as opposed to sampling
- Investigate time to complete tasks on sampled graphs, as well as accuracy
- Investigate false positives, such as a sampled low degree ²¹