Hashed Cubes: Simple, Low Memory, Real-Time Visual Exploration of Big Data

Storing Data in Memory
- Laying out datasets thoughtfully in memory means faster query times with large visualizations
- Think of data in computer memory like books in a library – the neater the better!

What Data?
- HashedCube used to store datasets with spatial, categorical, and temporal attributes
- 4.5 million BrightKite check-ins from April 2008 to Oct 2010
 - Spatial dimension: Geographical location
 - Categorical dimension: Day and hour
 - Temporal dimension: Time

What Tasks?
- Aggregate items in the dataset to answer questions such as:
 - How many people checked in on Brightkite in Europe on a Friday?
 - What does the trend in the number of global Brightkite check-ins look like in a year?

Storing Data in Memory
- Traversing each index in the array is tedious!

The Array: a Naive Approach
- Let’s say we wish to store the dataset below in an array
- Traversing each index in the array is tedious!

Building Hashedcubes
- Memory usage of hashedcubes directly proportional to number of pivots
- Key saturation reduces memory footprint

Hashedcube Memory Usage
- Hashedcubes required less memory than Nanocubes
 - Up to 5.2 times less in the best case

Hashedcube Query Times
- Only one in 50 queries took more than 40 ms
- Most time consuming queries required large number of aggregates of many small pivots
- Hashedcube query times worse than state-of-the-art
 - Nanocube worst case value around 12 ms
 - imMens had 20 ms query time on average

Critique
- Strengths:
 - Code available online!
 - Most query times are tolerable
 - Occupies less computer memory than the state-of-the-art
- Weaknesses:
 - Query times longer than the state-of-the-art
 - Need to tune the algorithm for generating Hashedcubes (Ex: Pick dimension sort order)

Multiple Spatial Dimensions
- Hashcubes support multiple spatial dimensions by using interweaved quadtreed

Hashedcube Memory Usage
- Memory usage of hashedcubes directly proportional to number of pivots

Hashedcube Query Times
- Only one in 50 queries took more than 40 ms
- Most time consuming queries required large number of aggregates of many small pivots

Critique
- Strengths:
 - Code available online!
 - Most query times are tolerable
 - Occupies less computer memory than the state-of-the-art
- Weaknesses:
 - Query times longer than the state-of-the-art
 - Need to tune the algorithm for generating Hashedcubes (Ex: Pick dimension sort order)

Thank you!

What Visual Encodings?
- Heat map
- Histogram
- Line graph

Video: https://vimeo.com/161051233

What Data?
- HashedCube used to store datasets with spatial, categorical, and temporal attributes
- 4.5 million BrightKite check-ins from April 2008 to Oct 2010

Temporal dimension: Time

Spatial dimension: Geographical location

Categorical dimension: Day and hour

Strengths:
- Code available online!
- Most query times are tolerable
- Occupies less computer memory than the state-of-the-art

Weaknesses:
- Need to tune the algorithm for generating Hashedcubes (Ex: Pick dimension sort order)