ThermalPlot: Visualizing Multi-Attribute Time-Series Data Using a Thermal Metaphor

Holger Stitz, Samuel Gratzl, Wolfgang Aigner, Marc Streit.
Presented by: Arash Shadkam

ThermalPlot Technique

• Multi-attribute time-series data
 ➢ Large number of items with multiple attributes changing over time
 ➢ Economics, sensor networks

• Challenges
 ➢ Overview of items showing Interesting temporal developments
 ➢ Integrating multiple heterogeneous attributes of a collection of items
 ➢ Multiple levels of temporal dynamics

• Solution?
 ➢ ThermalPlot visualization technique!
 ➢ Encoding changes in attributes into an item’s position
 ➢ Position based on a degree-of-interest (DOI) function
Previous work

• Multi-attribute item comparison
 ➢ Across multiple attributes of a single item
 ➢ Across a single attribute of multiple items
 ✓ Superimposing multiple curves in a line chart

• Temporal dynamics
 ➢ Mapping time to time
 ✓ Animations, *Gapminder Trendalyzer*
 ➢ Mapping time to space
 ✓ *Cycle Plot*
 ✓ Small multiples, *LiveRac*
 ➢ Trajectories
 ✓ *DimpVis*
ThermalPlot Concept

• Fundamental idea
 ➢ User-specified degree-of-interest (DOI) value
Math behind the DOI

• DOI

\[DoI_{raw}(t) = \sum_{i=1}^{n} w_i \times v_i(t) \mid \sum_{i=1}^{n} w_i = 1. \]

\[DoI(t) = \alpha \times DoI_{raw}(t) + (1 - \alpha) \times (DoI_{raw}(t - 1) + DoI_{trend}(t - 1)). \]

\[DoI_{trend}(t) = \beta \times (DoI(t) - DoI(t - 1)) + (1 - \beta) \times DoI_{trend}(t - 1). \]

• Delta(DOI)

\[\Delta DoI(t) = DoI(t) - DoI(t - \Delta t). \]

• Normalization

\[v_{rel}(t) = \frac{v(t) - v(t_{index})}{v(t_{index})}. \]
• User tasks
 ➢ Monitor the development of multiple items in a certain time window
 ➢ Select attributes and define their interestingness
 ➢ Detect items that are most interesting
 ➢ Understand why the items are considered to be interesting
 ➢ Monitor the development of a single item
Problem?!
Clutter Reduction Strategies

• Semantic Zooming
• Orthogonal Stretching
Data Flow

User Input
- Index Point
- Time Window
- Dol Editor
- Representation Borders

Data Input
- Multi-Attribute Time Series

Dol Computation for each item

\[x_{doi} = \text{Dol}(t_e) \]

\[y_{doi} = \Delta \text{Dol}(t_e - t_s) \]

Orthogonal Stretching

\[x_{doi}, y_{doi} \]

Output
- Item Position
- \(x, y \)
Use case
a) Negative stocks with positive trend

b) Positive stocks with positive trend

c) Positive stocks with negative trend

d) Negative stocks with negative trend
Analysis Summary

• What: data
 ➢ Time-series, multiple attributes, multiple items
• What: derived
 ➢ DOI and Delta(DOI) values based on user input
• How: encode
 ➢ Item’s position
 ➢ Diverging colors
• How: Manipulate
 ➢ Select
• How: Facet
 ➢ Juxtapose
• How: Reduce
 ➢ Focus+Context
• Why: Action
 ➢ Discover
 ➢ Browse
 ➢ Identify
• Why: Target
 ➢ Trends
 ➢ Distribution
Critique

• Strength
 ➢ Wise choice of item’s position
 ➢ Capability to handle large data sets
 ➢ Use of overview and details on demand

• Weakness
 ➢ No look-up scenarios anticipated
 ➢ Animation for live data streaming
 ➢ Adjusting the representation borders
THANKS!