
Teamline: Visualizing small team code contributions
CPSC 547 Project Proposal

Nick Bradley
nbrad11@cs.ubc.ca

Felix Grund
ataraxie@cs.ubc.ca

Fig. 1. Team view of the Teamline visualization.

1 INTRODUCTION

Our tool visualizes data collected by AutoTest1, an automatic grading
service used to grade code submissions for students in CPSC310. The
course is structured around a term-long coding project that is divided
into 5 deliverables/sprints completed by teams consisting of 2-3 stu-
dents. The first 3 of these deliverables are graded by a combination of
AutoTest and TAs. Teams manage their shared code on GitHub2 using
a basic git workflow: students pull the latest code changes from GitHub,
commit their modified code locally and then push those commits to
GitHub for other members to see. Every time a student pushes their
changes, AutoTest is automatically invoked and runs a private suite
of tests against the modified code. Results are stored in a NoSQL
database with each record corresponding to a single submission (push
event). The relevant attributes are briefly described in Table 1. We have
collected data for over 24,000 submissions for the first two deliverables;
complete data for the third deliverable will be available on March 13.
There are 285 students in 139 teams.

After a submission deadline, TAs meet with their assigned teams to
conduct a retrospective to discuss any challenges that arose during the
sprint and to ensure that the work was equitably distributed among the
team members. This typically consists of a TA asking some questions
designed to gauge a student’s comprehension of the task and code.
They may go so far as to explicitly and privately ask each student how

1http://github.com/nickbradley/autotest
2http://github.com

evenly they felt the workload was split. Based on the retrospective,
the TAs assign a scaling factor to the deliverable grade. For example,
if the team got 90% on the deliverable but one member did most of
the work, the final grades might be 90%*1.0 = 90% and 90%*0.6 =
54%. Unfortunately, it can be hard to determine how much work was
done by each student from these conversations since the team member
who contributed very little will attempt to spoof the TA while the hard-
working one may not want to rat out their partner. One possible solution
is to look at the commit history on GitHub to determine how many
commits each student made. This can be a decent proxy but can be
misleading since different people have different commit habits (some
will commit every line, others only large changes) and they may not
reflect the actual contribution to the grade (i.e. commits that don’t
directly increase the grade).

2 PROPOSED SOLUTION

Our solution is to create a derived quantitative attribute commitContri-
bution that describes the impact of a submission on the overall grade.
In particular, the attribute is the difference between the current sub-
mission and the previously graded one. We visualize this along with
other code metrics (Fig. 1) to gain a more complete understanding of
each student’s contribution: those who made more grade-improving
submissions should receive a higher retrospective grade. Note that this
visualization is designed to assist the TAs in making a judgment when
assigning a grade and cannot replace them since students may have
chosen a different way to divide the work among team members.

Here we use the what-why-how framework [2] to abstract our solu-
tion to the vis domain.

1



Table 1. Dataset Attributes.

Attribute Name Attribute Type Description
testGrade Quantitative Percentage of private tests that passed against student code.
coverageGrade Quantitative Percentage of code executed by student written tests.
finalGrade Quantitative Computed as 0.8*testGrade + 0.2*coverageGrade.
timestamp Sequential Unix time of record creation.
commitSha Categorical The (partial) SHA-1 hash of the submitted commit.
committer Categoricala The GitHub ID of the student making the submission.
team Categoricalb The team number, stored as teamXX, where XXX is a number between 2 and 199.
deliverable Sequential The submission deliverable, which can have values d1, d2, or d3.
a 285 values currently; max < 1000. b 139 values currently; max < 1000.

What. Table of graded submission records (items) with the attributes
described in Table 1. The dataset is static once it has been loaded on the
page but is dynamic in that the dataset grows with each new submission.

Why. Compare the contributions of team members and derive a
retrospective grade for each of them.

How. Our vis includes many encodings and idioms:

• Separate individual submissions and align them on two (or three)
parallel axes by timestamp.

• Submissions are represented by area marks. Marks that overlap
are collapsed into a single point mark whose size encodes the
number of submissions that were collapsed.

• Marks are coloured with saturation encoding the overall grade
for the submission (max saturation for a grade of 100%). We are
okay with using a lower effectiveness encoding which may not be
visible on marks showing only a single submission because the
final grade is not the focus of this vis.

• Interaction allows details about a submission to be seen:

– Hovering over a single mark displays a popup with detailed
information about the submission.

– Clicking a single point opens a new browser tab that dis-
plays the corresponding commit on GitHub.

– Hovering over a grouped mark expands it to show all sub-
missions it includes. Once expanded, the above interactions
are allowed.

3 SCENARIO

Imagine you are a TA tasked with scaling the final grade of each team
member by the amount they contributed. Upon meeting the team, you
open their Teamline to get a sense of the team dynamics: Did they start
early? Did they work consistently? What was their final grade? This
information is immediately available to you because Teamline defaults
to showing the team-view of the most recently due deliverable (Fig. 1).
Within the view, you find that the team made a few early submissions
that increased their grade and then made a large number of submissions
very close to the deadline. From the navigation pane, you notice that
only one of the team members contributed significantly to the final
grade.

You then proceed to discuss with each team member individually
about their contributions to the project. The one who made the larger
contribution according to Teamline, User1, had a clear understanding of
the code and was able to discuss a couple of challenges he encountered.
At the end of the retrospective, User1 said that each of them had done
the work they agreed to do (which they thought was an even split) but
that his partner started very late which made him apprehensive. To
confirm this, you expand the team-view (Fig. 2) to show individual
submissions made by each team member and do in fact notice that all
of the submissions for the other member, User2, were made the night
before the due date and that User1’s submissions were made earlier and
more consistently.

Next, you talk to User2. After he explains what he contributed, you
mention that by starting so late, it may negatively impact the group

dynamic. User2 denies this by claiming that he started days earlier but,
after you show him Teamline, agrees that he should start earlier next
time. While looking at Teamline, you also notice that User1 did quite a
bit more work for the previous deliverable as well. You point this out
to both User1 and User2 and they are a bit surprised. You help them
divide up the work for the next deliverable more equitably.

Later in the week, you decide to check how the team is proceeding.
You immediately see that several submissions were made. Curious
to see if your discussion helped, you expand the team-view and see
that User2 has already made several submissions. You feel much more
confident having scaled back User2’s grade by only 20% since he is
now contributing more.

Fig. 2. Student view of the Teamline visulaization. Submissions are
displayed separately for each student.

4 IMPLEMENTATION APPROACH

We have decided to implement Teamline as a web application. We
decided on this for a variety of reasons: our familiarity with web
technologies (especially JavaScript), platform independence, increased
likelihood of adoption in CPSC310 (and other courses that will be
using AutoTest), and integration with other services used in the course.
Teamline is minimally dependent on existing AutoTest infrastructure,
only requiring access to the database via a REST endpoint, and is
completely novel to the existing system.

5 EXPERTISE

We decided on this project, in part, because we are both currently TAs
for CPSC310 and have experienced the challenges of assigning a fair
retrospective grade. In addition, we are both excited to make use of the
otherwise largely unused data.

Furthermore, we wrote and are currently managing the AutoTest
system including the database. As such, we have an understanding of
the data: how it was created, its limitations, and some ways it can be
meaningfully linked with other data sources like GitHub.

Finally, this project is mildly interesting from a research perspective
since it is in our research area of software engineering. At a high level,
it will be interesting to see how software engineering students use the

2



git workflow to manage their project and collaborate with their team
members.

Table 2. Task Schedule.

Task Est Time Deadline Description
Pitch (x2) 8 Feb. 16 Create slides, rehearse pitch.
Proposal 12 Mar. 6 Discuss project ideas, create mockups, write proposal.
Project Review 1 2 Mar. 21 Prepare slides.
Interim writeup 6 Mar. 31 Summary of progress, completed previous work section.
Project Review 2 2 Apr. 2 Prepare slides, have some version of demo ready.
Implementation 48 Apr. 7 Completed vis tool.
- Create database view 8 Mar. 14 Create view(s) of computed/derived attributes in CouchDB.
- Create tabs/buttons 8 Mar. 21 Set up project frontend. Create navigation buttons.
- Main vis (Fig. 1) 25 Mar. 31 Implement team view including fetching data, display/layout, interaction, animation.
- Main vis (Fig. 2) 15 Apr. 7 Implement student view. Some of the team view implementation should be reusable.
Presentation 10 Apr. 25 Prepare slides, demo, video(?). Rehearse.
Final paper 20 Apr. 28 Finalize paper. Draft to be written Apr. 10-18.

6 MILESTONES AND SCHEDULE

We are prepared to spend about 116 hours together towards this project.
Table 2 provides a breakdown of the project’s tasks.

7 PREVIOUS WORK

Our vis was inspired by ShiViz3 which shows messages being passed
among a collection of processes to verify the happens-before relation is
not violated, commit graphs like the one built into BitBucket4 which
visualize commits in time, the map view on Craigslist5 which shows
size-encoded point marks, and the magnifying effect for the OS X dock.

In addition, research around team contribution and collaboration
(e.g. [1]) could help us further refine Teamline.

REFERENCES

[1] R. Kelly, L. Watts, and S. J. Payne. Can visualization of contributions
support fairness in collaboration?: Findings from meters in an online game.
In Proceedings of the 19th ACM Conference on Computer-Supported Coop-
erative Work & Social Computing, CSCW ’16, pages 664–678, New York,
NY, USA, 2016. ACM.

[2] T. Munzner. Visualization Analysis and Design. A K Peters Visualization
Series. CRC Press, 2014.

3https://bestchai.bitbucket.io/shiviz/?
4https://marketplace.atlassian.com/plugins/com.plugin.commitgraph.commitgraph/server/overview
5https://vancouver.craigslist.ca/search/hhh

3


