RoboVis

Alistair Wick
Background

- Designed a small robot arm
- 3 degrees of freedom
- 3D printable
- Controlled with a Python App
Background III

• Old control app shows where the arm can reach (workspace)
• Uses inverse kinematics based on the arm’s dimensions and other parameters
Background II

• The fact it’s 3D printed is interesting
• 3D printing is great for small runs of custom objects
• Why have a static design?
• Idea: Let users design their own arm for printing
The Idea

• Make a tool to help users design robot arms!
• Should guide towards useful solutions
• Tool produces ‘config’ files describing dimensions, motor power, constraints, etc.
 • Config can be fed into an OpenSCAD script (or similar program)
 • ... generates 3D files for printing!

• Assume users have an idea of the load and reach requirements
Why not use the existing app?

• Painfully slow
 • Can’t change config in-app: alter file and restart app
 • 10+ seconds to calculate workspace for one arm

• Built as a middle-man control app, not for design
 • No advanced GUI
 • No load calculations
Objectives

• Essentially a configuration space exploration tool
• Display workspace and load capabilities
• Tool which will guide towards a good solution
 • User has some idea of what they need
 • Help them find the configuration that achieves that
• Responsive – fast iteration
• Ability to output config files
RoboVis - Overview
Usage

• Application has a “current” configuration, and a particular parameter of interest

• The main view visualizes the results for this configuration
 • Expected reach
 • Expected load capabilities

• Current config adjusted using the sliders/value boxes on the right hand side

• Config can also be saved to/loaded from a YAML file
Workspace - Outline

• The space the end-effector can reach
• IK run across sample grid
• Contour-map around points with a valid solution
Load - Heatmap

- Shows the distribution of maximum load for the current configuration
- Max load calculated for static case with specified motor torques
Load Histogram/Slider

- Minimum load slider
- Coupled with histogram of load
Basic Interaction

• Shape and heatmap respond as the user alters parameters
• Visualization of the arm can be shown for a selected point
• Arm updates its dimensions and pose
Inspection

• Hover over the vis to see coordinates in mm + max load in newtons
• Click to select inspection point
• Bar chart shows how load at a point will change with the current parameter
Parameter space

How will the results change with a particular parameter?

Current config

Parameters extend in all directions
Ghosts – Preview Outlines

- Extra outlines around the main one
- Show how the reachable area will change for different parameters
- Blue for -ve change
- Yellow for +ve change
Ghosts – Preview Outlines

• User can then ‘slide through’ the configurations in real time
• Ghosts are updated (recalculated) on the fly
• Opacity shows distance from current config
Ghosts – Preview Outlines

• Switches between parameters are instant!
• Ghosts for the other parameters are kept updated
Technical

• Lots of work making this responsive!

• NumPy is awesome
 • Reformulated IK code into big matrix operations
 • Improved IK solving performance by around 200x over naïve Python implementation

• Ghost outlines are an ‘embarrassingly parallel’ problem
 • Calculations offloaded to pool of worker processes
 • Spreads work across all CPU cores
 • Results are presented as they become available
Thanks!

Questions?
Asynchronous Calculations

Main Process

- Configuration
 - Change config
 - Change triggers calculations

- Interface

- Solver
 - Poll Results

- Job Queue
 - Configuration to solve, Priority, Creator Ref

- Results
 - Results of IK – grid of reachable cells, load distribution

- Worker Pool
 - 1 solver per parameter and ghost (dozens total)
 - 1 solver per parameter and ghost (dozens total)