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WHAT?

Recall REDUCE task:
In: HD Data

Out: 2D projection
Today's paper:

In: HD Data

Out: “"optimal” set of 2D
projections
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WHY?

Large space of potential
projections

Would like to tind a
minimal set of
"interesting” projections
to describe our dataset
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ALGORITHM - HIGH LEVEL

At iteration i, given set of projections A = {Ay, ..., Ai.1}

Greedily find linear projection B that is most dissimilar
from the projections in A

Add A = B to our set of projections

Repeat until the best new projection gives no new
insight (equivalent up to an affine transtormation)



The devil's in the details.. ..



MEASURING DISSIMILARITY

Distance of a Record to
the Orgin in Data Space

0 max




NDING THE "MOST DISSIMILAR™

NONIGRRIGOIN

Given A = {Ay, ..., Ai1} start by setting B_ A 1.
Apply gradient ascent to increase the dissimilarity

Stop when B converges and it to A
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TERMINATING THE ALGORITHM

Terminate when d(B Ao, ..., A1) = 0.

i.e. We have a complete set of linear projects up to
affine transtorms.

This occurs after at most n/2 projections.



Optimal Set
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HOW DO WE CHOOSE {Ag}?

Detault choice: radial layout.

Stable to alternative choices - the
data patterns remain visible even it

the projections change.







SUMMARY

The algorithm produces the optimal set of linear
projections up to affine transforms.

Produces < n/2 independent projections.

Relatively robust to initialisation and convergence
parameters.

Scalability could be an issue? Distance is expensive.

Needs testing to see if the affine assumption reasonable



