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Recall REDUCE task: 

• In: HD Data 

• Out: 2D projection 

Today’s paper: 

• In: HD Data 

• Out: “optimal” set of 2D 
projections

318 13. Reduce Items and Attributes

Figure 13.12. Dimensionality reduction of a large document collection using Glimmer for multidimensional scaling.
The results are laid out in a single 2D scatterplot, allowing the user to verify that the conjectured clustering shown
with color coding is partially supported by the spatial layout. From [Ingram et al. 09, Figure 8].
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Fig. 6. Influence of the convergence parameter ρ for the parametrization ρ = 0.1, ρ = 0.01, and ρ = 0.001 on the behavior of the dissimilarity d
corresponding to the resulting optimal set of projections: (left) Intra Set and (right) Inter Set Differences for the test data.

Be d(Ai, l) the dissimilarity to the subset of predecessor projec-
tions {Aπ

l ,A1, . . . ,Ai−1} for such a set of projections that results
if the ascent starts with Aπ

l . We define the inter set dissimilarity
d(Ai, l,0) = |d(Ai, l)− d(Ai,0)| of projection Ai to the projections
with the same index i that result by starting the ascent at Aπ . For a
projection Ai over all runs j = 1, . . . ,100 with the same l, we stored its
mean inter set dissimilarity dµ (Ai, l) = 1

100 ∑100
j=1 d j(Ai, l,0) as well as

the maximum/minimum dissimilarity dmin(Ai, l,0)/ dmax(Ai, l,0).
Figure 7 illustrates the results. It can be seen that the mean inter

set dissimilarity dµ (Ai, l) is stable: an unstable behavior could be rec-
ognized by an exponential growth in dµ (Ai, l). However, this is not
what we observe. Instead, we observe a converging behavior against
similar projections even though the initial projection becomes diffuse.
Figure 8 (a) illustrates this ability in detail for randomly chosen runs of
the Wine dataset for different l: the first five projections of the optimal
set can be seen each. Especially the different projections A1 stably
show the main pattern in that data, which is shaped like a rotated ver-
sion of the letter ’u’, independently to the start projection A0.

We are also interested in the behavior if the initial projection is ran-
domly chosen, for instance by a user-based interaction. Regarding this,
Figure 8 (b) row-wise illustrates the first five projections of the opti-
mal set with respect to three randomly chosen inital projections A0 of
the Wine data. Interestingly, prominent data patterns, such as the ’u’
pattern in A1, are still visited in each case. In fact, our experiments
show that relevant data patterns are found independently of the chosen
start projection A0 (please find further examples in the supplemental
material).

7 DISCUSSION AND LIMITATIONS

Improvements, advantages, and limitations of our approach will be
discussed in this section.

Why discarding affine transformations?: In Information Visual-
ization, depending on the application and the dataset, different goals of
a visual analysis are possible. Among them there are universal goals
that are relevant to all applications: the segmentation of the data points

into meaningful clusters. While there is a large amount of cluster defi-
nitions for an automatic clustering, visual clustering [29] has been es-
tablished as an interesting alternative, i.e., an interactive process where
the user manually marks the clusters in appropriate projections. This
has the advantage that no prior knowledge about shape or properties
of the clusters are necessary. We argue that for a visual clustering,
affine transformations of the projections are of less relevance: regions
that are clearly visually distinguishable remain distinguishable after
an affine transformation. Please note that the human perception sys-
tem is not rotationally invariant, and thus the setup for the presentation
of projections influences the users’ capability to recognize important
structures. Nevertheless, it is paramount to have such a set of pro-
jections available that mutually bear the most structural information
regarding the data, which is the focus of this work. Then, to ask for
a well designed presentation in order to show the set of projections to
the user is not within this paper’s focus.

Relation to quality metrics: Quality metrics measure the quality
of a single projection. In contrast, our approach measures the quality
of a projection relative to a number of already present projections. In
this sense, our approach is orthogonal to existing quality metrics. In
fact, they can be used as starting point of our approach.

Dependence on the starting projection: Our approach is
parametrized by a start projection A0 (cf. Sec. 6.5). Even though
the choice of this projection influences the set of optimal projections,
the relevant data patterns, or variations, stably remain visible. Hence,
the final result regarding a visual search is less dependent on A0.

Completeness of sets of projections: Given a dataset with
rank(D) = n+1, the space of all Star Coordinates under discarding of
affine transformations is completely described by nb = abs( n

2 ) linear
independent projections: we can find nb linear independent projections
A1, ...,Anb with d(A j,A1, ...,A j−1,A j+1, ...,Anb)> 0 for j = 1, ...,nb,
and d(B,A1, ...,Anb) = 0 for any projection matrix B. The value of
n/2 intended projections can be explained as follows: the space of
all projections is 2n-dimensional, since a projection matrix Ai consist
of 2n independent entries. By discarding affine transformations, each
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  A 1        ≈        A 2        ≠      A 3



  A 1        ≈        A 2        ≠      A 3

   d ( A 1 ,  A 2 ) = 0       d ( A 1 ,  A 3 ) > 0



A L G O R I T H M  -  H I G H  L E V E L

• At iteration i, given set of projections A = {A0, …, Ai-1} 

• Greedily find linear projection B that is most dissimilar 
from the projections in A 

• Add Ai = B to our set of projections 

• Repeat until the best new projection gives no new 
insight (equivalent up to an affine transformation)



The devil’s in the details….



M E A S U R I N G  D I S S I M I L A R I T Y

610 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,  VOL. 22,  NO. 1, JANUARY 2016

the inherent structure of data needs to be considered for the selection
of a good projection. We introduce a data-driven strategy for choosing
a small set of optimal projections. Regarding this, the ProjInspec-
tor [20] proposes an interactive exploration technique for a set of ba-
sic projections in order to find interesting combinations of them. Our
approach does not require an interactive stage to find interesting pro-
jections. In addition, the set of projections our approach produces can
be utilized as such basic projections, and thus our approach can be
well combined with the ProjInspector.
Distance-based Projection Techniques: The Multidimensional scaling
(MDS) [27] preserves distances between the data records under pro-
jection via the spectrum of a data-dependent centered distance matrix.
PCA-based techniques also belong to this family of techniques. With
Glimmer [13], a high-performance approach for multilevel MDS on
graphic processing units is known. The large amount of distance in-
formation required to build up a projection can be reduced by part-
linear multidimensional projection (PLMP) [21] to a small number of
pairwise distances between a number of representative data samples,
which substantially increase performance of the projection process.
Local affine multivariate projection (Lamp) [14] provides a local data
projection technique by minimizing the distances of the projected data
points with the aid of (interactively) initialized seed or control points
in the visualization space. Our approach does not optimize data-based
distances to find a good projection. Instead, it optimizes a measure
between different projections in order to discard affine transforma-
tions. In fact, it could be combined with distance-based projection
techniques.
Data Tours: A data tour is given by a set of (relevant) projections be-
ing a subset of the projection space, which can be investigated by the
user for the purpose of visual data analysis. A time sequence of a set of
projections is provided for conducting a visual data exploration. The
projection pursuit [11, 6] and the grand tour [3] provide a greedy tour
of (bivariate) projections, which exponentially grows with the number
n of data dimensions. They allow to intuitively detect patterns of inter-
est in the data, but they are time consuming, especially with growing
n. Our concept provides a smart tour with a lower and optimal number
of projections that is guaranteed to be free of redundancies, but still
visits all important views of the data.

Quality Metrics: Their basic idea is to map a quality (correlation,
cluster, trends) of a projection onto a real number. With this fil-
tering tool, a set of good projections might be identified. For this,
a collection of precomputed projections is rated and the worst ones
are rejected. A set of metrics are available and established, such as
[28, 22, 24, 1, 2, 26, 23]. We refer to [5] for further details. Quality
metrics are useful to find good projections but they have a computa-
tional overhead regarding the number of required projections. Clearly,
the vast majority of precomputed projections will be rejected. We in-
troduce an alternative concept that avoids the computational overhead
of quality metrics.

In the following, we establish a dissimilarity measure for projec-
tions.

3 A DISSIMILARITY MEASURE FOR PROJECTIONS

The n-dimensional dataset is given as m data points d j =
(d1, j, ...,dn, j)T for j = 1, ...,m, resulting in an n×m data matrix

Data = (d1, ...,dm). (1)

In this paper, we restrict ourselves to 2D Star Coordinates, i.e., linear
projections that are defined by a 2× n matrix A. Then the projection
of a point d j is A · d j, and the matrix of all projected points is the
2×m matrix A ·Data. Note that A can be interpreted and visualized
as the projection of the high-dimensional coordinate axes: for A =
(x1, ...,xn), we have (xi − 0) = A · ii where 0 is the 2D origin and
ii = (0, ...,0︸ ︷︷ ︸

i−1

,1,0, ...,0︸ ︷︷ ︸
n−i

)T is the ith coordinate axis for i = 1, ...,n.

The projection matrices A1, ...,Ar define a number r of projections. To
define the dissimilarity of a new 2×n projection matrix B to A1, ...,Ar,

we consider an affine transformation of each projection that is given
by a 2×2 matrix Qi and a translation vector ri. We define

E = B ·Data− 1
r

r

∑
i=1

( Qi ·Ai ·Data+(ri, ...,ri︸ ︷︷ ︸
m

) ) (2)

and search for the Qi and ri that minimize the Frobenius norm of E.
This gives the dissimilarity of B to A1, ...,Ar:

d(B,A1, ...,Ar) =
1
m

min
Q1,...,Qr ,r1,...,rr

∥E∥2
Fr. (3)

Figure 2 illustrates the dissimilarity function for n = 3,m = 65,r = 1.

(b) (c)(a)

(d) (e)

Distance of a Record to
the Orgin in Data Space
0 max

Fig. 2. Dissimilarity function for n = 3,m = 65,r = 1; a) n-dimensional
dataset Data; b) projection by A1; c) projection by B; d) best affine trans-
formation of projection A1; e) distance of B,A1.

Given Data,A1, ...,Ar and B, (3) is a quadratic minimization prob-
lem with the unknowns Qi,ri. To formulate its closed-form solution,
we consider the problem in homogenous coordinates:

Data =

(
d1 ... dm
1 ... 1

)
,A =

⎛

⎜⎜⎝

A1 0
...

...
Ar 0

0...0 1

⎞

⎟⎟⎠ ,B =

(
B 0

0...0 1

)

where Data is the homogeneous data matrix, A is a (2r+1)× (n+1)
matrix of all known projection matrices Ai, and B is the new projection
matrix in homogenous coordinates. From this we compute a solution
of this minimization problem as

D = Data ·DataT (4)

H =

(
I−D·AT ·

(
A·D·AT

)−1
·A

)
·Data (5)

where I is the (n+ 1)× (n+ 1) unit matrix and H is an (n+ 1)×m
matrix with a vanishing last row. Note that

(
A·D·AT

)
is a symmetric

quadratic (2r+1)×(2r+1) matrix, depending on r. Since r < n<<m
usually applies, the calculation of the inverse performs well and is only
weakly affected by the curse of dimensionality. Further we get

E = B ·H (6)

where E is a 3×m matrix with a zero third row. E is the homogenous
version of (2) with optimal Qi,ri, i.e.,

d(B,A1, ...,Ar) =
1
m

∥E∥2
Fr. (7)

The proof of (7) is provided in Appendix 1. The behavior of d under
scaling of the projection matrices is given by

d(βB,α1A1, ...,αrAr) = β d(B,A1, ...,Ar) (8)

for any real β and real non-zero αi. The αi have no influence because
of the discarding of affine transformations, the linear behavior in β is
due to the fact that d essentially adds up Euclidean distances of the
projected points.

4 GRADIENT ASCENT FOR OPTIMAL PROJECTIONS

Based on the dissimilarity measure for projections, we present an al-
gorithm to find a finite (low) number of projections that represent the
high-dimensional data best. The main idea is to find projections that
have a large dissimilarity to each other. We propose a greedy algo-
rithm: starting with a projection A0, we repeatedly find new projec-
tions A1,A2, ... until a new projection does not give new insight into
the data. Given A0, ...,Ai, we search for Ai+1 such that it has maximal
dissimilarity to A0, ...,Ai. For this, we apply a gradient ascent of d:

B0 = Ai (9)
B j+1 = orth( B j +λ ∇B d(B,A1, ...Ai) )

and stop if ∥B j+1 −B j∥2
Fr < ρ . The convergence parameter ρ , as a

numerical parameter, steers the smallest dissimilarity that has to be
reached to stop the algorithm. It influences the performance of the as-
cent and the final number of projections. See Sec. 6.4 for details. Then
Ai+1 = B j+1. The whole algorithm stops if A0, ...,Ai are complete,
i.e., for any new projection B we have d(B,A0, ...,Ai) = 0. In (9),
the function orth() computes a matrix orth(A), by applying a Gram-
Schmidt orthonormalization to the row vectors of A, which guarantees
an orthographic projection of the data to the visualization space [17].
Due to the scaling behavior of d described in (8), it is required to re-
strict the length of row vectors in B j+1 to one, which is done by this
orthonormalization. (6), (7) give that gradient ∇Bd of d in the vari-
ables B can be computed as

∇B d(B,A1, ...,Ar) =
2
m

B ·H ·HT (10)

being a 3× (n+1) matrix where both the last row and the last column
are zero.

Our algorithm has the following parameters: the start projection A0,
the step size λ for the gradient ascent, and the convergence parame-
ter ρ . While choosing λ = 1, the other parameters are discussed in
Section 6.4 and 6.5.

5 INTERACTION CONCEPTS

We describe an approach for an interactive analysis of a dataset by
smoothly changing the projection matrix A. This means that we con-
sider a time-varying projection matrix A(t) where we use our dissim-
ilarity measure to compute its path from an initial projection A(t0)
and some user input. For this, we propose two strategies: maximal
deformation or minimal deformation of the projection. For maximal
deformation, the path should consist of a sequence of projections that
are maximally distant to their neighbors. In other words: for maximal
deformation, the projection A(t) ·Data should have maximal changes
under minimal changes of A(t). Contrary, for minimal deformation,
the projection A(t) ·Data should have minimal changes under max-
imal changes of A(t). This strategy aims to provide information on
which coordinate axes are dependent on each other. For both strate-
gies, we apply an Euler integration of A(t):

A(ti+1) = A(ti)+(ti+1 − ti) Ȧ(ti) (11)

where the time derivative Ȧ of A is unknown. For the strategy of
maximal deformation, Ȧ(ti) is chosen to maximize d(A(ti+1),A(ti))
for (ti+1−ti)→ 0. This is an eigenproblem: setting r = 1, we consider
the eigenvector en+1 corresponding to the largest eigenvalue of H ·
HT . Note that en+1 forms both the first and second optimal row of
the projection matrix A. Since en+1 is an eigenvector, its length is
undefined, gives us two degrees of freedom α,β for scaling en+1 in
each row of A. This gives:

Ȧ = (α en+1 , β en+1 , 0n+1)
T (12)

where 0n+1 is the (n+1)-dimensional zero vector. Then α,β are sub-
ject of user interaction: the user can draw the 2D path of the projection
of a coordinate axis xi(t) of A(t) from which we get is tangent ẋi(t).

This gives the parameters α,β by ẋi = (en+1).i
(

α
β

)
where (en+1).i

is the ith component of en+1.
For the strategy of minimal deformation, we consider the third-

smallest eigenvector e3 of H ·HT . Note that H ·HT has at least two
vanishing eigenvalues, reflecting the discarding of the affine transfor-
mations of the projections. Then we get

Ȧ = (α e3 , β e3 , 03)
T (13)

with a similar treatment of α,β as above.

6 EXPERIMENTS

As proof of concept, we present a set of approach-related experiments.
Our experiments run on a mobile workstation with a 2.4 GHz 64 Bit
Intel CPU with 8 cores, 12 GB RAM, and WIN 7 OS in single-core
and single-thread mode.

We introduce the used benchmark data in Sec. 6.1, we illustrate
the interaction tool in Sec. 6.2 and the optimal set of projections in
Sec. 6.3, which are compared with the commonly used PCA-based
approach for visual data exploration. In Sec. 6.4, we investigate the
stability of the gradient ascent regarding the influence of convergence
parameter ρ and, in Sec. 6.5, regarding the initial projection A0 (cf.
Sec. 4).

6.1 The High-Dimensional Test Datasets
Five high-dimensional test datasets are used from the UCI data
base [4]: Iris [9], Yeast [18], Wine [10], Wdbc [25], and Cars [4].
Table 1 points the data characteristics.

Dataset Dimensions Records Classes
Iris 5 150 3
Yeast 10 1484 10
Wine 14 178 3
Wdbc 32 569 2
Cars 33 7755 52

Table 1. Characteristics of the benchmark test datasets.

In detail, the Fisher’s Iris plants data base consist of 5 dimensions
with 150 records. It gives measurements of the sepal as well as the
petal length and width for three iris species. An amount of protein
localization sites is given in the Yeast dataset, with 10 dimensions and
1484 records. It is usually used to develop probabilistic classifica-
tions systems in order to predict properties of proteins. The Wine data
consist of 14 dimensions with 178 records. It stems from a chemical
analysis of three cultivars of wine which have grown in the same Ital-
ian region. Thus, wine-specific characteristics are summarized, such
as the level of alcohol, the amount of phenols, or the color intensity.
The Wisconsin Diagnostic Breast Cancer aka Wdbc consists of 569
records with 32 quantitative dimensions each. It contains a set of at-
tributes of cell nucleus measurements that are obtained from breast
cancer patients. It turned out that a linear separation by a 2D classifier
based on the attributes area, texture, and smoothness allows to diag-
nose benign and malignant cancer cells. The Cars data base contains
33 dimensions and 7755 records. A broad parameter set for differ-
ent car models is provided, which encompasses attributes, such as the
number of cylinders, the maximum velocity, or the power of a car.

Note that a potential a priori classification within the data is not
within the focus of our approach or even required. Thus such cases
are treated as usual dimensions. Furthermore, to guarantee a fair com-
parison between outcomes, to avoid numerical influence, and to re-
duce scaling effects, we linearly normalized the data within the inter-
val [0,1]. Since affine transformations are removed, the normalization
does not negatively affect the quality of the optimal set of projections.
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T E R M I N AT I N G  T H E  A L G O R I T H M

• Terminate when d(B, A0, …, Ai-1 ) = 0. 

• i.e. We have a complete set of linear projects up to 
affine transforms. 

• This occurs after at most n/2 projections.
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6.2 Path-based Interaction
We illustrate the interaction concept of Sec. 5. Figure 3 presents a
representative coordinate axis interaction for the Wine (Figure 3 (top))
and Yeast dataset (Figure 3 (bottom)): A coordinate axis is moved
along a (green colored) path to yield time-varying projections A(t),
shown by Figure 3 (middle). We present the projections A(t)·Data
at time-points ti, i = 1, . . . ,4 for both the minimal deformation (Fig-
ure 3 (left)) and maximal deformation case (Figure 3 (right)). It can
be seen that the maximal deformation projections are different to each
other, reflecting the maximization of the dissimilarity measure during
the interaction. In contrast to that, the minimal deformation projec-
tions produce similarly shaped outcomes and are similar to the initial
projection.
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Fig. 3. Minimal (left) and maximal (right) deformation of data patterns
during identical interaction in the Wine (top) and Yeast (bottom) dataset
along an interaction path (green).

To preserve minimal or cause maximal dissimilarity between projec-
tions might lead to fluctuations of eigenvectors (cf. Sec. 5), even
though the function of eigenvalues itself is smooth over the interac-
tion. This effect is caused by data characteristics and might lead to
jitter of A(t). Thus, it provides additional structural data insight. In
the following, we construct optimal sets of projections of the test data.

6.3 Optimal Set of Projections for Test Data
The gradient ascent of Sec. 4 is applied to the test data. For this, the
question of an appropriate initial projection arises: An established ini-
tial standard configuration Aπ of a multivariate projection is the radial
layout [17, 15], given by

Aπ =

(
x0, . . . ,xn−1
y0, . . . ,yn−1

)
with (xi,yi)

T = b·(sin(i·α),cos(i·α))T

and i = 0, . . . ,n−1 whereas α = 2·π
n and b =

√
2/n. Following [17], a

construction scheme of an orthonormalization (cf. Sec. 4) is given by
using a radius b =

√
2/n, meaning that Aπ becomes an orthographic

projection. It is an appropriate candidate for the initial projection A0 of
our gradient descent. Thus, our approach defines A0 =Aπ as the initial
projection for the gradient ascent with the convergence parameter ρ =
0.1.

The Figures 4 and 5 illustrate the optimal set of projections pro-
duced by our approach (top) in comparison to the same number of
best PCA-based projections (bottom), w.r.t. our benchmark datasets
(cf. Sec 6.1). PCA is given by the eigenvectors ei, i = 1, . . . ,n of the
data’s covariance matrix, which minimizes correlation and maximizes
variance. Pairwise eigenvectors define a 2×n projection Ai j = ei/ j =

(ei,e j)T . Note that the complete number of PCA projections grows

quadratically in the dimension number n, while the number of our set
of optimal projections grows linear in n. For instance, the Wine dataset
with n = 14 dimensions has a total number of 91 PCA-based projec-
tions (which can be found in the supplemental material), while our
optimal set only requires 7 projections. However, in order to provide
a fair comparison that reflects the use of PCA in practice, a subset of
the largest pairwise eigenvalues is presented for each case, which has
the same number of projections as our optimal set.

For our optimal sets in the figures, the annotated dissimilarity
label d of a projection Ai describes the dissimilarity to the sub-
set of predecessor projections {Ao, . . . ,Ai−1} referring to (7) as
d(B,Ao, . . . ,Ai−1) = d(Ai) with B = Ai. Consequently, we treat the
PCA projections similarly: the dissimilarity label d of a PCA projec-
tion ei/ j also describes the dissimilarity to the subset of predecessor
PCA-based projections. This comparison setup facilitates an empiri-
cal comparison of the dissimilarity behavior for both techniques. Keep
in mind that a larger dissimilarity means that more data insight is given
with a certain projection. Finally, the dissimilarity behavior is summa-
rized by a graph at the end of each projection sequence for each dataset
and projection technique.

For our optimal sets, it can be seen that the dissimilarity rapidly de-
creases with growing index i, i.e., d(Ai)> d(Ai+1) with i≥ 1, . . .r−1.
This appears to be plausible, since the degree of freedom to find a pro-
jection that cannot be generated as affine transformation gets small if
a sufficient number of projections is available. In fact, only the first
two, three or occasionally four projections of the optimal projection
set show relevant data patterns. Clearly, stopping the ascent in early
stages would still lead to projections showing the most important pat-
terns. Beyond that, our experiments illustrate that the number r of
projections is optimal with r ≤ n

2 .
In comparison to that, each new PCA-based projection only pro-

vides little additional insight compared to the first PCA projection e1/2
for each case: The dissimilarity values are much smaller and almost
negligible compared to those of our optimal set of projections. On the
other hand, relevant patterns that are shown by the PCA-based pro-
jections can also be seen in the set of optimal projections. Thus, our
experiments empirically illustrate the advantages of our optimal set of
projections compared to PCA.

6.4 Influence of Convergence Parameter
The convergence parameter ρ influences both the dissimilarity
between successively selected projections during the gradient ascent
and the algorithm’s performance and convergence behavior. In fact,
a too large value of parameter ρ would cause projections that have a
small dissimilarity to each other. Thus, the parameter should be rather
small in order to facilitate projections that have a large dissimilarity
and thus provide new data insights. On the other hand, if ρ is chosen
too small, then the algorithm’s performance decreases. In order to
find a good choice of the convergence parameter ρ , we investigate
the algorithm’s behavior for a set of small values, such as ρ = 0.1,
ρ = 0.01, and ρ = 0.001 (with A0 = Aπ ). Figure 6 illustrates the
results.

Intra Set Differences: Figure 6 (left) shows column-wise the intra
set differences d(Ai) of the projections Ai, i = 1, . . . ,r for each value
of ρ and row-wise for the test data. It can be seen that the patterns
are comparable and only weakly dependent on ρ . Furthermore, the
calculation time grows approximately logarithmically in ρ .

Inter Set Differences: We are interested in a comparison of
the projections with the same index i but different values in ρ:
Be Aρ = {A0, . . . ,Ar} the set of projections w.r.t. ρ , and be
Aρ (i) = Ai a projection of it, then we define the inter set difference
d(i,ρk,ρl) = d(Aρk (i),Aρl (i)) as the dissimilarity between projec-
tions with the same index in different sets that are based on different
values of ρ . Figure 6 (right) shows the inter set differences d(i,ρk,ρl)
with i = 1, . . . ,r. The differences behave quite stable and they are just
weakly dependent on the accuracy of ρ .
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We illustrate the interaction concept of Sec. 5. Figure 3 presents a
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shown by Figure 3 (middle). We present the projections A(t)·Data
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Fig. 3. Minimal (left) and maximal (right) deformation of data patterns
during identical interaction in the Wine (top) and Yeast (bottom) dataset
along an interaction path (green).

To preserve minimal or cause maximal dissimilarity between projec-
tions might lead to fluctuations of eigenvectors (cf. Sec. 5), even
though the function of eigenvalues itself is smooth over the interac-
tion. This effect is caused by data characteristics and might lead to
jitter of A(t). Thus, it provides additional structural data insight. In
the following, we construct optimal sets of projections of the test data.

6.3 Optimal Set of Projections for Test Data
The gradient ascent of Sec. 4 is applied to the test data. For this, the
question of an appropriate initial projection arises: An established ini-
tial standard configuration Aπ of a multivariate projection is the radial
layout [17, 15], given by

Aπ =

(
x0, . . . ,xn−1
y0, . . . ,yn−1

)
with (xi,yi)

T = b·(sin(i·α),cos(i·α))T

and i = 0, . . . ,n−1 whereas α = 2·π
n and b =

√
2/n. Following [17], a

construction scheme of an orthonormalization (cf. Sec. 4) is given by
using a radius b =

√
2/n, meaning that Aπ becomes an orthographic

projection. It is an appropriate candidate for the initial projection A0 of
our gradient descent. Thus, our approach defines A0 =Aπ as the initial
projection for the gradient ascent with the convergence parameter ρ =
0.1.

The Figures 4 and 5 illustrate the optimal set of projections pro-
duced by our approach (top) in comparison to the same number of
best PCA-based projections (bottom), w.r.t. our benchmark datasets
(cf. Sec 6.1). PCA is given by the eigenvectors ei, i = 1, . . . ,n of the
data’s covariance matrix, which minimizes correlation and maximizes
variance. Pairwise eigenvectors define a 2×n projection Ai j = ei/ j =

(ei,e j)T . Note that the complete number of PCA projections grows

quadratically in the dimension number n, while the number of our set
of optimal projections grows linear in n. For instance, the Wine dataset
with n = 14 dimensions has a total number of 91 PCA-based projec-
tions (which can be found in the supplemental material), while our
optimal set only requires 7 projections. However, in order to provide
a fair comparison that reflects the use of PCA in practice, a subset of
the largest pairwise eigenvalues is presented for each case, which has
the same number of projections as our optimal set.

For our optimal sets in the figures, the annotated dissimilarity
label d of a projection Ai describes the dissimilarity to the sub-
set of predecessor projections {Ao, . . . ,Ai−1} referring to (7) as
d(B,Ao, . . . ,Ai−1) = d(Ai) with B = Ai. Consequently, we treat the
PCA projections similarly: the dissimilarity label d of a PCA projec-
tion ei/ j also describes the dissimilarity to the subset of predecessor
PCA-based projections. This comparison setup facilitates an empiri-
cal comparison of the dissimilarity behavior for both techniques. Keep
in mind that a larger dissimilarity means that more data insight is given
with a certain projection. Finally, the dissimilarity behavior is summa-
rized by a graph at the end of each projection sequence for each dataset
and projection technique.

For our optimal sets, it can be seen that the dissimilarity rapidly de-
creases with growing index i, i.e., d(Ai)> d(Ai+1) with i≥ 1, . . .r−1.
This appears to be plausible, since the degree of freedom to find a pro-
jection that cannot be generated as affine transformation gets small if
a sufficient number of projections is available. In fact, only the first
two, three or occasionally four projections of the optimal projection
set show relevant data patterns. Clearly, stopping the ascent in early
stages would still lead to projections showing the most important pat-
terns. Beyond that, our experiments illustrate that the number r of
projections is optimal with r ≤ n

2 .
In comparison to that, each new PCA-based projection only pro-

vides little additional insight compared to the first PCA projection e1/2
for each case: The dissimilarity values are much smaller and almost
negligible compared to those of our optimal set of projections. On the
other hand, relevant patterns that are shown by the PCA-based pro-
jections can also be seen in the set of optimal projections. Thus, our
experiments empirically illustrate the advantages of our optimal set of
projections compared to PCA.

6.4 Influence of Convergence Parameter
The convergence parameter ρ influences both the dissimilarity
between successively selected projections during the gradient ascent
and the algorithm’s performance and convergence behavior. In fact,
a too large value of parameter ρ would cause projections that have a
small dissimilarity to each other. Thus, the parameter should be rather
small in order to facilitate projections that have a large dissimilarity
and thus provide new data insights. On the other hand, if ρ is chosen
too small, then the algorithm’s performance decreases. In order to
find a good choice of the convergence parameter ρ , we investigate
the algorithm’s behavior for a set of small values, such as ρ = 0.1,
ρ = 0.01, and ρ = 0.001 (with A0 = Aπ ). Figure 6 illustrates the
results.

Intra Set Differences: Figure 6 (left) shows column-wise the intra
set differences d(Ai) of the projections Ai, i = 1, . . . ,r for each value
of ρ and row-wise for the test data. It can be seen that the patterns
are comparable and only weakly dependent on ρ . Furthermore, the
calculation time grows approximately logarithmically in ρ .

Inter Set Differences: We are interested in a comparison of
the projections with the same index i but different values in ρ:
Be Aρ = {A0, . . . ,Ar} the set of projections w.r.t. ρ , and be
Aρ (i) = Ai a projection of it, then we define the inter set difference
d(i,ρk,ρl) = d(Aρk (i),Aρl (i)) as the dissimilarity between projec-
tions with the same index in different sets that are based on different
values of ρ . Figure 6 (right) shows the inter set differences d(i,ρk,ρl)
with i = 1, . . . ,r. The differences behave quite stable and they are just
weakly dependent on the accuracy of ρ .
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• Default choice: radial layout. 

• Stable to alternative choices - the 
data patterns remain visible even if 
the projections change.
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6.2 Path-based Interaction
We illustrate the interaction concept of Sec. 5. Figure 3 presents a
representative coordinate axis interaction for the Wine (Figure 3 (top))
and Yeast dataset (Figure 3 (bottom)): A coordinate axis is moved
along a (green colored) path to yield time-varying projections A(t),
shown by Figure 3 (middle). We present the projections A(t)·Data
at time-points ti, i = 1, . . . ,4 for both the minimal deformation (Fig-
ure 3 (left)) and maximal deformation case (Figure 3 (right)). It can
be seen that the maximal deformation projections are different to each
other, reflecting the maximization of the dissimilarity measure during
the interaction. In contrast to that, the minimal deformation projec-
tions produce similarly shaped outcomes and are similar to the initial
projection.
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Fig. 3. Minimal (left) and maximal (right) deformation of data patterns
during identical interaction in the Wine (top) and Yeast (bottom) dataset
along an interaction path (green).

To preserve minimal or cause maximal dissimilarity between projec-
tions might lead to fluctuations of eigenvectors (cf. Sec. 5), even
though the function of eigenvalues itself is smooth over the interac-
tion. This effect is caused by data characteristics and might lead to
jitter of A(t). Thus, it provides additional structural data insight. In
the following, we construct optimal sets of projections of the test data.

6.3 Optimal Set of Projections for Test Data
The gradient ascent of Sec. 4 is applied to the test data. For this, the
question of an appropriate initial projection arises: An established ini-
tial standard configuration Aπ of a multivariate projection is the radial
layout [17, 15], given by

Aπ =

(
x0, . . . ,xn−1
y0, . . . ,yn−1

)
with (xi,yi)

T = b·(sin(i·α),cos(i·α))T

and i = 0, . . . ,n−1 whereas α = 2·π
n and b =

√
2/n. Following [17], a

construction scheme of an orthonormalization (cf. Sec. 4) is given by
using a radius b =

√
2/n, meaning that Aπ becomes an orthographic

projection. It is an appropriate candidate for the initial projection A0 of
our gradient descent. Thus, our approach defines A0 =Aπ as the initial
projection for the gradient ascent with the convergence parameter ρ =
0.1.

The Figures 4 and 5 illustrate the optimal set of projections pro-
duced by our approach (top) in comparison to the same number of
best PCA-based projections (bottom), w.r.t. our benchmark datasets
(cf. Sec 6.1). PCA is given by the eigenvectors ei, i = 1, . . . ,n of the
data’s covariance matrix, which minimizes correlation and maximizes
variance. Pairwise eigenvectors define a 2×n projection Ai j = ei/ j =

(ei,e j)T . Note that the complete number of PCA projections grows

quadratically in the dimension number n, while the number of our set
of optimal projections grows linear in n. For instance, the Wine dataset
with n = 14 dimensions has a total number of 91 PCA-based projec-
tions (which can be found in the supplemental material), while our
optimal set only requires 7 projections. However, in order to provide
a fair comparison that reflects the use of PCA in practice, a subset of
the largest pairwise eigenvalues is presented for each case, which has
the same number of projections as our optimal set.

For our optimal sets in the figures, the annotated dissimilarity
label d of a projection Ai describes the dissimilarity to the sub-
set of predecessor projections {Ao, . . . ,Ai−1} referring to (7) as
d(B,Ao, . . . ,Ai−1) = d(Ai) with B = Ai. Consequently, we treat the
PCA projections similarly: the dissimilarity label d of a PCA projec-
tion ei/ j also describes the dissimilarity to the subset of predecessor
PCA-based projections. This comparison setup facilitates an empiri-
cal comparison of the dissimilarity behavior for both techniques. Keep
in mind that a larger dissimilarity means that more data insight is given
with a certain projection. Finally, the dissimilarity behavior is summa-
rized by a graph at the end of each projection sequence for each dataset
and projection technique.

For our optimal sets, it can be seen that the dissimilarity rapidly de-
creases with growing index i, i.e., d(Ai)> d(Ai+1) with i≥ 1, . . .r−1.
This appears to be plausible, since the degree of freedom to find a pro-
jection that cannot be generated as affine transformation gets small if
a sufficient number of projections is available. In fact, only the first
two, three or occasionally four projections of the optimal projection
set show relevant data patterns. Clearly, stopping the ascent in early
stages would still lead to projections showing the most important pat-
terns. Beyond that, our experiments illustrate that the number r of
projections is optimal with r ≤ n

2 .
In comparison to that, each new PCA-based projection only pro-

vides little additional insight compared to the first PCA projection e1/2
for each case: The dissimilarity values are much smaller and almost
negligible compared to those of our optimal set of projections. On the
other hand, relevant patterns that are shown by the PCA-based pro-
jections can also be seen in the set of optimal projections. Thus, our
experiments empirically illustrate the advantages of our optimal set of
projections compared to PCA.

6.4 Influence of Convergence Parameter
The convergence parameter ρ influences both the dissimilarity
between successively selected projections during the gradient ascent
and the algorithm’s performance and convergence behavior. In fact,
a too large value of parameter ρ would cause projections that have a
small dissimilarity to each other. Thus, the parameter should be rather
small in order to facilitate projections that have a large dissimilarity
and thus provide new data insights. On the other hand, if ρ is chosen
too small, then the algorithm’s performance decreases. In order to
find a good choice of the convergence parameter ρ , we investigate
the algorithm’s behavior for a set of small values, such as ρ = 0.1,
ρ = 0.01, and ρ = 0.001 (with A0 = Aπ ). Figure 6 illustrates the
results.

Intra Set Differences: Figure 6 (left) shows column-wise the intra
set differences d(Ai) of the projections Ai, i = 1, . . . ,r for each value
of ρ and row-wise for the test data. It can be seen that the patterns
are comparable and only weakly dependent on ρ . Furthermore, the
calculation time grows approximately logarithmically in ρ .

Inter Set Differences: We are interested in a comparison of
the projections with the same index i but different values in ρ:
Be Aρ = {A0, . . . ,Ar} the set of projections w.r.t. ρ , and be
Aρ (i) = Ai a projection of it, then we define the inter set difference
d(i,ρk,ρl) = d(Aρk (i),Aρl (i)) as the dissimilarity between projec-
tions with the same index in different sets that are based on different
values of ρ . Figure 6 (right) shows the inter set differences d(i,ρk,ρl)
with i = 1, . . . ,r. The differences behave quite stable and they are just
weakly dependent on the accuracy of ρ .
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We illustrate the interaction concept of Sec. 5. Figure 3 presents a
representative coordinate axis interaction for the Wine (Figure 3 (top))
and Yeast dataset (Figure 3 (bottom)): A coordinate axis is moved
along a (green colored) path to yield time-varying projections A(t),
shown by Figure 3 (middle). We present the projections A(t)·Data
at time-points ti, i = 1, . . . ,4 for both the minimal deformation (Fig-
ure 3 (left)) and maximal deformation case (Figure 3 (right)). It can
be seen that the maximal deformation projections are different to each
other, reflecting the maximization of the dissimilarity measure during
the interaction. In contrast to that, the minimal deformation projec-
tions produce similarly shaped outcomes and are similar to the initial
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Fig. 3. Minimal (left) and maximal (right) deformation of data patterns
during identical interaction in the Wine (top) and Yeast (bottom) dataset
along an interaction path (green).

To preserve minimal or cause maximal dissimilarity between projec-
tions might lead to fluctuations of eigenvectors (cf. Sec. 5), even
though the function of eigenvalues itself is smooth over the interac-
tion. This effect is caused by data characteristics and might lead to
jitter of A(t). Thus, it provides additional structural data insight. In
the following, we construct optimal sets of projections of the test data.

6.3 Optimal Set of Projections for Test Data
The gradient ascent of Sec. 4 is applied to the test data. For this, the
question of an appropriate initial projection arises: An established ini-
tial standard configuration Aπ of a multivariate projection is the radial
layout [17, 15], given by
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n and b =
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2/n. Following [17], a

construction scheme of an orthonormalization (cf. Sec. 4) is given by
using a radius b =

√
2/n, meaning that Aπ becomes an orthographic

projection. It is an appropriate candidate for the initial projection A0 of
our gradient descent. Thus, our approach defines A0 =Aπ as the initial
projection for the gradient ascent with the convergence parameter ρ =
0.1.

The Figures 4 and 5 illustrate the optimal set of projections pro-
duced by our approach (top) in comparison to the same number of
best PCA-based projections (bottom), w.r.t. our benchmark datasets
(cf. Sec 6.1). PCA is given by the eigenvectors ei, i = 1, . . . ,n of the
data’s covariance matrix, which minimizes correlation and maximizes
variance. Pairwise eigenvectors define a 2×n projection Ai j = ei/ j =

(ei,e j)T . Note that the complete number of PCA projections grows

quadratically in the dimension number n, while the number of our set
of optimal projections grows linear in n. For instance, the Wine dataset
with n = 14 dimensions has a total number of 91 PCA-based projec-
tions (which can be found in the supplemental material), while our
optimal set only requires 7 projections. However, in order to provide
a fair comparison that reflects the use of PCA in practice, a subset of
the largest pairwise eigenvalues is presented for each case, which has
the same number of projections as our optimal set.

For our optimal sets in the figures, the annotated dissimilarity
label d of a projection Ai describes the dissimilarity to the sub-
set of predecessor projections {Ao, . . . ,Ai−1} referring to (7) as
d(B,Ao, . . . ,Ai−1) = d(Ai) with B = Ai. Consequently, we treat the
PCA projections similarly: the dissimilarity label d of a PCA projec-
tion ei/ j also describes the dissimilarity to the subset of predecessor
PCA-based projections. This comparison setup facilitates an empiri-
cal comparison of the dissimilarity behavior for both techniques. Keep
in mind that a larger dissimilarity means that more data insight is given
with a certain projection. Finally, the dissimilarity behavior is summa-
rized by a graph at the end of each projection sequence for each dataset
and projection technique.

For our optimal sets, it can be seen that the dissimilarity rapidly de-
creases with growing index i, i.e., d(Ai)> d(Ai+1) with i≥ 1, . . .r−1.
This appears to be plausible, since the degree of freedom to find a pro-
jection that cannot be generated as affine transformation gets small if
a sufficient number of projections is available. In fact, only the first
two, three or occasionally four projections of the optimal projection
set show relevant data patterns. Clearly, stopping the ascent in early
stages would still lead to projections showing the most important pat-
terns. Beyond that, our experiments illustrate that the number r of
projections is optimal with r ≤ n

2 .
In comparison to that, each new PCA-based projection only pro-

vides little additional insight compared to the first PCA projection e1/2
for each case: The dissimilarity values are much smaller and almost
negligible compared to those of our optimal set of projections. On the
other hand, relevant patterns that are shown by the PCA-based pro-
jections can also be seen in the set of optimal projections. Thus, our
experiments empirically illustrate the advantages of our optimal set of
projections compared to PCA.

6.4 Influence of Convergence Parameter
The convergence parameter ρ influences both the dissimilarity
between successively selected projections during the gradient ascent
and the algorithm’s performance and convergence behavior. In fact,
a too large value of parameter ρ would cause projections that have a
small dissimilarity to each other. Thus, the parameter should be rather
small in order to facilitate projections that have a large dissimilarity
and thus provide new data insights. On the other hand, if ρ is chosen
too small, then the algorithm’s performance decreases. In order to
find a good choice of the convergence parameter ρ , we investigate
the algorithm’s behavior for a set of small values, such as ρ = 0.1,
ρ = 0.01, and ρ = 0.001 (with A0 = Aπ ). Figure 6 illustrates the
results.

Intra Set Differences: Figure 6 (left) shows column-wise the intra
set differences d(Ai) of the projections Ai, i = 1, . . . ,r for each value
of ρ and row-wise for the test data. It can be seen that the patterns
are comparable and only weakly dependent on ρ . Furthermore, the
calculation time grows approximately logarithmically in ρ .

Inter Set Differences: We are interested in a comparison of
the projections with the same index i but different values in ρ:
Be Aρ = {A0, . . . ,Ar} the set of projections w.r.t. ρ , and be
Aρ (i) = Ai a projection of it, then we define the inter set difference
d(i,ρk,ρl) = d(Aρk (i),Aρl (i)) as the dissimilarity between projec-
tions with the same index in different sets that are based on different
values of ρ . Figure 6 (right) shows the inter set differences d(i,ρk,ρl)
with i = 1, . . . ,r. The differences behave quite stable and they are just
weakly dependent on the accuracy of ρ .
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Fig. 6. Influence of the convergence parameter ρ for the parametrization ρ = 0.1, ρ = 0.01, and ρ = 0.001 on the behavior of the dissimilarity d
corresponding to the resulting optimal set of projections: (left) Intra Set and (right) Inter Set Differences for the test data.

Be d(Ai, l) the dissimilarity to the subset of predecessor projec-
tions {Aπ

l ,A1, . . . ,Ai−1} for such a set of projections that results
if the ascent starts with Aπ

l . We define the inter set dissimilarity
d(Ai, l,0) = |d(Ai, l)− d(Ai,0)| of projection Ai to the projections
with the same index i that result by starting the ascent at Aπ . For a
projection Ai over all runs j = 1, . . . ,100 with the same l, we stored its
mean inter set dissimilarity dµ (Ai, l) = 1

100 ∑100
j=1 d j(Ai, l,0) as well as

the maximum/minimum dissimilarity dmin(Ai, l,0)/ dmax(Ai, l,0).
Figure 7 illustrates the results. It can be seen that the mean inter

set dissimilarity dµ (Ai, l) is stable: an unstable behavior could be rec-
ognized by an exponential growth in dµ (Ai, l). However, this is not
what we observe. Instead, we observe a converging behavior against
similar projections even though the initial projection becomes diffuse.
Figure 8 (a) illustrates this ability in detail for randomly chosen runs of
the Wine dataset for different l: the first five projections of the optimal
set can be seen each. Especially the different projections A1 stably
show the main pattern in that data, which is shaped like a rotated ver-
sion of the letter ’u’, independently to the start projection A0.

We are also interested in the behavior if the initial projection is ran-
domly chosen, for instance by a user-based interaction. Regarding this,
Figure 8 (b) row-wise illustrates the first five projections of the opti-
mal set with respect to three randomly chosen inital projections A0 of
the Wine data. Interestingly, prominent data patterns, such as the ’u’
pattern in A1, are still visited in each case. In fact, our experiments
show that relevant data patterns are found independently of the chosen
start projection A0 (please find further examples in the supplemental
material).

7 DISCUSSION AND LIMITATIONS

Improvements, advantages, and limitations of our approach will be
discussed in this section.

Why discarding affine transformations?: In Information Visual-
ization, depending on the application and the dataset, different goals of
a visual analysis are possible. Among them there are universal goals
that are relevant to all applications: the segmentation of the data points

into meaningful clusters. While there is a large amount of cluster defi-
nitions for an automatic clustering, visual clustering [29] has been es-
tablished as an interesting alternative, i.e., an interactive process where
the user manually marks the clusters in appropriate projections. This
has the advantage that no prior knowledge about shape or properties
of the clusters are necessary. We argue that for a visual clustering,
affine transformations of the projections are of less relevance: regions
that are clearly visually distinguishable remain distinguishable after
an affine transformation. Please note that the human perception sys-
tem is not rotationally invariant, and thus the setup for the presentation
of projections influences the users’ capability to recognize important
structures. Nevertheless, it is paramount to have such a set of pro-
jections available that mutually bear the most structural information
regarding the data, which is the focus of this work. Then, to ask for
a well designed presentation in order to show the set of projections to
the user is not within this paper’s focus.

Relation to quality metrics: Quality metrics measure the quality
of a single projection. In contrast, our approach measures the quality
of a projection relative to a number of already present projections. In
this sense, our approach is orthogonal to existing quality metrics. In
fact, they can be used as starting point of our approach.

Dependence on the starting projection: Our approach is
parametrized by a start projection A0 (cf. Sec. 6.5). Even though
the choice of this projection influences the set of optimal projections,
the relevant data patterns, or variations, stably remain visible. Hence,
the final result regarding a visual search is less dependent on A0.

Completeness of sets of projections: Given a dataset with
rank(D) = n+1, the space of all Star Coordinates under discarding of
affine transformations is completely described by nb = abs( n

2 ) linear
independent projections: we can find nb linear independent projections
A1, ...,Anb with d(A j,A1, ...,A j−1,A j+1, ...,Anb)> 0 for j = 1, ...,nb,
and d(B,A1, ...,Anb) = 0 for any projection matrix B. The value of
n/2 intended projections can be explained as follows: the space of
all projections is 2n-dimensional, since a projection matrix Ai consist
of 2n independent entries. By discarding affine transformations, each
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Fig. 7. Influence of varying the start projection A0 on the dissimilarity corresponding to the resulting optimal set of projections, which is statistically
measured by the mean inter set dissimilarity dµ and the maximum/minimum dissimilarity dmin/dmax for the test data.

projection matrix Ai loses 4 degrees of freedom. A matrix Ai with all
its affine transformations forms a 4-dimensional subspace of the space
of all transformation matrices. Hence, n/2 projection matrices with its
affine transformations are enough to cover the transformation space.

Relation to MDS and PCA: MDS usually provides one as
distance-preserving as possible projection, from nD to 2D space. Ap-
plying an affine transformation on a MDS M, such as rotation and
scaling, yield an equivalent or identical MDS configuration. Follow-
ing (7), two MDS configurations Mi and M j are identical, i.e. they
convey the same information, if d(Mi,M j) = 0, meaning they can be
mapped to each other by affine transformations. In addition, PCA pro-
vides a set of partly relevant projections. It contains relevant projec-
tions but also a number of them that lead to visual noise. See an exam-
ple of this behavior for the Wine dataset in the supplemental material.
The ratio of relevant projections is higher with our approach, meaning
that our set is less repetitive, making a user-based visual search more
feasible. This is reflected by the fact that the number of projections
grows quadratically in n for PCA, for our optimal set it grows linearly
in n. Moreover, PCA requires Gaussian-distributed data to perform
optimally, otherwise relevant data patterns might be undetectable. Our
approach does not have such a requirement. Lastly, PCA performs
differently if different data normalization approaches are used. Since
affine transformations do not affect the result of our approach, our op-
timal sets behave more stably regarding data normalization.

8 CONCLUSION

We provided a novel approach to measure the dissimilarity of multi-
variate projections disregarding affine transformations. It is based on
the idea that a new projection in a tour should have a large dissimi-
larity to all projections that were already presented, in order to ensure
the presentation of new data insights. Based on this measure, a small
set of optimal projections is automatically selected by our approach. It
makes a projection-based visual search more feasible for a user, since
the number of projections is restricted to n/2. For the future, we are
interested in the investigation of further measures that can be applied
to a number of projections. For instance, to automatically detect a

number of prominent projections which optimally describe the data.

APPENDIX 1:

Proof that (4)-(7) is the solution of the minimization problem (3):

Defining Qi =

(
Qi ri

0 0 1

)
for i = 1, ...,r, we can write (2) in ho-

mogeneous coordinates

E = B ·Data− 1
r

r

∑
i=1

Qi ·Ai ·Data. (14)

Note that E in (2) and E in (14) are identical except for an additional
zero row in E. Introducing the 3× (2r + 1) matrix of all unknown
affine transformation parameters

X =

(
Q1 ... Qr r1 + ...+ rr
0 0 ... 0 0 r

)
, (15)

(14) can be written as

E = B ·Data− 1
r

X ·A ·Data. (16)

Then the condition for X to minimize ∥E∥2
Fr is

B ·Data · (A ·Data)T =
1
r

X ·A ·Data · (A ·Data)T (17)

which can be solved to

X = r B ·D ·AT · (A ·D ·AT
)−1. (18)

Inserting this into (16) gives (6) with (4) and (5).
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S U M M A R Y

• The algorithm produces the optimal set of linear 
projections up to affine transforms. 

• Produces < n/2 independent projections. 

• Relatively robust to initialisation and convergence 
parameters.  

• Scalability could be an issue? Distance is expensive. 

• Needs testing to see if the affine assumption reasonable


