
SAPVis: An interactive system explorer

Vaden Masrani

Fig. 1. SAPVis arc layout showing a filtered selection of a SAP domain

Abstract—In this work we present SAPVis, an interactive network visualization tool which helps SAP developers track dependency
graphs in their network in order to guide testing and find inefficiencies within their system. By using an non-static arc diagram
layout coupled with user manipulation tools (filter, sort, zoom, pan, and resize by attribute) we show how our visualization can help
developers view and compare subgraph network topologies, find duplicate code, find outliers, and understand the impact of making
changes to a component within the system.

Index Terms—SAP, Arc Diagram, Network

1 INTRODUCTION

SAP (Systems, Applications & Products in Data Processing) is soft-
ware used by large multinational corporations to manage their daily
operations. SAP is used by over 290 000 companies in 190 countries
and controls 24% of the global enterprise software market. Compa-
nies use SAP to manage inventory, sales, expenses, payroll, and every-
thing else organizations need to keep track of in order to run efficiently.
The base SAP system is robust enough to meet most business require-
ments but many companies nonetheless customize the application to
deal with their specific requirements. These customizations could in-
clude millions of lines of code over thousands of objects built and
enhanced over time. These custom components consist of a large in-
terconnected network of objects which can become obsolete and slow.
Because these system are often managed by changing staff they of-
ten contain many inefficiencies, including duplicate or unused code,
expired users, redundant data tables and ineffective or outdated test
suites. A tool that can help technicians quickly locate these inefficien-
cies would help companies improve their SAP system and save them
money.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of
Publication xx xxx. 201x; date of current version xx xxx. 201x.
For information on obtaining reprints of this article, please send
e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx/

SAP currently offers numerous tools for developers and system
technicians. Many times, however, the output from these tools are
presented as a complicated table of values without any visual aids.
For example, the ST03 Workload Monitor as seen in Figure 2 shows
performance statistics of all programs run by the company [10]. This
tool allows the user to view statistics pertaining to a particular artifact,
where here we define artifact as any SAP-specific object, including
users, program, data table, transaction code, function group, and more
as seen in table 1.

One thing the Workload Monitor does not do, however, is dis-
play dependency graphs. Dependency graphs are a series of caller-
callee (parent/child) relationships which show artifact A depend-
ing on artifact B. One example of a dependency graph is shown
in Figure 3, where we see IPC SAP.h depending on ace/IPC SAP.i,
ace/Flag Manip.h, ace/post.h, and ace/pre.h, which in turn depend on
other programs. Developers have many uses for dependency graphs.
First, they are a way to track the effect of a change in a particular area
of the system. Upon modifying a program, developers can run tests
only over those artifacts in the dependency graph of the program be-
ing changed rather than testing the entire set of programs in the system.
It’s common for SAP systems to contain over 90000 artifacts while
some of the dependency graphs within those system can contain fewer
than a hundred nodes. Therefore testing only over the dependency
graph saves time and resources. A developer also can get a quick vi-
sual estimate of code similarity between two artifacts by comparing
multiple dependency graphs. Too often, because the SAP system is
central to a company’s operation, developers will make a copy of a



productive program to make changes to it rather than modify the pro-
gram itself. Unfortunately, this results in several programs that more
or less do the same thing but cause maintenance issues when a bug
is found in the original. Examples of these are programs like ZBUD,
ZBUDNEW, ZBUDOLD and so one. An artifact can have multiple
parents and multiple children, or they can have no parents or children
at all, which we call “orphaned”. Therefore dependency graphs also
serve as a quick visual indicator of the relative importance of a partic-
ular artifact. A high degree indicates importance in the system while
orphaned nodes may be able to be archived or deleted.

We envision SAPVis to be one tool among many used by SAP de-
velopers tasked with improving the efficiency of their system. Specif-
ically, we want to quickly find underperforming, unused or duplicate
artifacts that can be modified to make the SAP system more responsive
and stable. In addition, we want to provide as quick way for techni-
cians trace the effects of changes to an area of their network. The
dataset and tasks are described in detail in section 3. We will accom-
plish this by displaying the network in an interactive arc diagram as
described in sections 4 and 5. We begin below with a brief overview
of common techniques used to display network data.

Fig. 2. ST03 Workload Monitor, the code monitoring tool currently of-
fered by SAP

Fig. 3. A small dependency graph showing the relationship between
seven programs. Here we see IPC SAP.h depending on four other pro-
grams, ace/IPC SAP.i, ace/Flag Manip.h, ace/post.h, and ace/pre.h.

2 RELATED WORK

There have been many proposed network visualization idioms. The
most common and most intuitive is a node-link (NL) diagram, where
each item is represented by a point in 2D space and lines are drawn
to show connections between items. Data attributes can be encoded
by the size, shape and colour of the nodes and edges. The NL id-
iom works well with small, sparse networks but suffers from readabil-
ity and performance issues with large and highly connected networks.
Computing the positions of the nodes can be a challenge, particularly
with large networks which are prone to producing “hairballs”. Force
directed layout algorithms are the most common algorithms for com-
puting node layouts, but they are notoriously brittle on large networks,
and are non-deterministic which can cause confusion with the user.
Alternative layouts include Chord Diagrams which lay the nodes on

the circumference of the circle or arc diagrams which lay the nodes
along one dimension [7]. Computing the position of nodes in 1D is in-
expensive compared with the force directed layout algorithms and arc
diagrams avoid the hairball problem, but they can still suffer from oc-
clusion and edge crossing issues, especially as the size of the network
grows.

A common alternative to the node-link diagram is an adjacency ma-
trix (AM), where networks are displayed in a symmetric 2D matrix
with the rows and columns each representing the nodes, and an en-
try at position M(i,j) representing an edge between node i and j. The
entries can be filled with a boolean, an edge weight, or a colour to en-
code an edge attribute. Adjacency matrices can handle large and dense
matrices but their major weakness is unfamiliarity; most users need to
be taught how to read adjacency matrices and the steep learning curve
can be a hurdle, especially for non technical user [8].

There has been work in trying to overcome the limitations of both
views by combining adjacency matrices and node-link views. For ex-
ample, because tracing paths can be more challenging in adjacency
matrices than in NL diagrams, MatLink [3] overlays the matrix views
with an arc diagram along the row and column headers to facilitate
path tracing. MatrixExplorer [2] provides two synchronized views
(matrix and NL) faceted together along with manipulation tools - fil-
tering, clustering, reordering, sorting, zoom and pan, annotation - to
allow the users to explore the data. NodeTrix [4] shows multiple ad-
jacency matrices linked together by first showing the network as a NL
diagram and allowing the users to select dense regions of the network
to be shown as an adjacency matrix.

Another approach in visualizing large networks is to aggregate the
data in such a way as to provide the user with a meaningful abstrac-
tions of the entire network. This gives the user metadata on the net-
work as a whole rather than displaying the exact network topology.
PivotGraph [13] does this by performing a roll-up operation to com-
bine similar nodes and display them on an grid with two categorical
attributes along the axes. Instead of displaying every node and arc
in the network, aggregate nodes and arcs display the relationship be-
tween categorical attributes in the network as a whole. The Honey-
comb [12] system also aggregates nodes, but instead uses a predefined
hierarchy to aggregate cells of an adjacency matrix in order to display
social networks with millions of connections. Elzen and Wikjs DOSA
system [11] aggregates user selections and displays meta-information,
such as number of nodes and edges with the selection, in a high-level
overview display alongside the original network. The original network
is displayed as a scatterplot with the x and y axis encoding two of its
attributes. Filtering and selection tools are provides to the user to allow
them to select which areas of the network they wish to aggregate.

Nagel and Duval offer a visual survey of arc diagram techniques and
list five primary characteristics that distinguish arc diagrams from one
another. They are: 1. Node distance 2. Node seriation 3. Arc direction-
ality 4. Arc weight and 5. Degree of connections [9]. Characteristics 1
and 2 pertain to the layout of the nodes. In our case, distance between
nodes holds no meaning, what Nagel and Duval call Layout, but the
nodes are serialized based on both type and a user selected attribute.
Variants to the Layout choice include Data, where distance between
nodes maps to a value in the data, and Metadata, where the distance is
based on a value of the diagram (eg. degree). Criteria 3 and 4 pertain to
the characteristics of the arcs. In our design, arcs are neither directed
nor weighted, but they are coloured based on the parent node, meaning
the type of the parent can be discerned by looking at the arc. Adding
arc weights and directionality is an area of future work. Finally, Nagel
and Duval’s fifth criteria specifies whether an arc connects one node
or groups of node. Our design has opted for showing connections be-
tween single nodes, but integrating the pivot graph roll-up technique
would be a possible extension of this work.

Surprisingly, all the arc diagrams listed by Nagel and Duval were
static and could not be manipulated by the user. In contrast, our sys-
tem allows the user to filter, zoom, select, resize, and resort the nodes
in order to explore their network. It is important to preserve network
topology in the context of understanding an SAP system so this work
will not aggregate nodes like was done in the PivotGraph and Honey-



comb systems. To handle the scale issues that come with a NL view,
we will instead allow the user to reduce their dataset by attribute values
in order to find outliers and extremum. We have opted to use a node-
link view over an adjacency matrix because we want to minimize the
learning curve of the tool and facilitate easy path exploration.

3 DATA AND TASK ABSTRACTIONS

The data comes from CodeExcellence, a company which offers tools
to help companies monitor the quality of their code. The data and tasks
are described below.

3.1 Data Description

It is common for a highly customized SAP system to contain over
90,000 artifacts which are divided into various domains that represent
different subdivisions within a business. For example, a domain could
represent all users and programs in the finance department within the
company. Our system will display one domain, which are typically
approx. 3000 nodes and 15000 edges. Table 1 lists the 13 primary arti-
facts which can exist in a domain. Each artifact has a performance and
usage score which come internal monitoring within the SAP frame-
work, as well as creation dates, database size (where applicable) and a
list of dependencies.

The dataset consists of item and link data where each item has cat-
egorical, ordinal and quantitative attributes. The main categorical at-
tributes are types (eg. USER, PROG, TCOD), domain (eg. “PS -
Project System”) and id (eg.“PROG-ZZ CONVERT SDCC DATA”).
The ordinal attribute is the creation date. The main quantitative at-
tributes are performance, usage, size and degree. The performance
and usage attributes are scores between 0 and 1, the size by number of
lines of code, and the degree is an integer which measures the number
of incoming and outgoing edges.

Link data shows the relationships between various artifacts, where
a link between arti f act i and arti f act j means arti f act i calls or has
access to arti f act i in the SAP system. This can be a user who has
permissions to modify a particular program, or a program which uses
a particular data table. The links are coloured based on the parents
type and a node can have multiple or zero links. Circular links are
possible (where arti f act i and arti f act j which calls arti f act i) but
are currently not displayed, as one arc will be occluded behind the
other.

3.2 Task Description

It is important to identify those artifacts which have many links as
these are an integral part of the SAP domain and therefore should be
tested often. Similarly, it is important for SAP technicians to iden-
tify orphans, or artifacts with no parents or children, as these are not
communicating with any other part of the system. Orphans are likely
duplicate or unused code which can be deleted. Besides looking for
artifacts with zero links, a technician can compare dependency graph
topologies in order to estimate whether two artifacts are duplicates, or
near duplicates of each other. Of course the technician would have
to verify this by looking at the code directly, but the topological view
allows the technician to quickly scan for potential duplicates. A tech-
nician might also want to verify their changes have no unintended con-
sequences by running tests over all artifacts in the system that are de-
pendent on the modified code. The dependency graph allows the user
to quickly identify the IDs of those artifacts they want to test. Finally,
the technician may want to find bottlenecks in their system by selecting
artifacts which meet a particular criteria, for example low performance
and high usage. These artifacts would then be flagged as needing to be
rewritten.

In the language of visualization, we are creating a tool that allows
users analyze and search within their network. The analyze task lets
user consume their data in order to discover outliers (programs that
aren’t called, users with no permissions, tables that aren’t used), find
similarities in network topologies which may be a source of duplicate
and therefore redundant code and find extremum (eg. programs with
high usage and low performance). The tool should also support the
four types of search, “Lookup”, “Locate”, “Browse”, “Explore”. The

user may want to use the search bar or table to look up a particular
node in order to view the attributes associated with that node. By
allowing the user to sort the nodes based on attributes we introduce
“locate”, which in this context is locating the position of a particular
node along the axis after the nodes have been sorted by an attribute.
If the user does not know the identity of the node(s) they are looking
for, they may choose to “browse” instead by exploring the parents or
children of a node, or sorting by an attribute and looking at the low or
high range of each type. Finally, by making use of the zoom, pan, sort
and filter tools, they can explore the subsets of the network without
having a specific target in mind.

4 SOLUTION

After surveying various network layout idioms, we settled on an 1D
arc layout over the more conventional 2D force directed layout or
adjacency matrix approach. Initially we tried a 2D layout, trying
the a number of parameters with the Barnes-Hut [1], Kamada and
Kawai [6], and ForceAtlas2 [5] algorithms on datasets with 1500
nodes and 10000 edges. None avoided the “hairball” problem and all
took upwards of five minutes to stabilize. As well, spacial position in
force-directed layouts contain no inherent meaning (except relation-
ally with clustering) and so we would not have been able to encode
any quantitative information via the position channel nor would we
have been able to offer the user sort functionality. Adjacency matri-
ces would solve the performance issue and are able to be sorted based
on quantitative attributes but most users are unfamiliar with this idiom
and therefore encounter a steep learning curve when learning to read
the matrix. We recognizing our tool is one among many a SAP de-
veloper may use and a steep learning curve would reduce the adoption
rate of our tool.

For these reasons we decided on an arc layout approach. This
should be an intuitive idiom for most new users and we have the po-
sition, luminance, saturation and area channels with which to encode
information. The arc diagram is faceted with a standard table view,
and a filter pane on the left side, as seen in image 1. The arc diagram
is fully interactive; the user can zoom pan, and the immediate parents
and children (one level of the dependency graph) is displayed upon
hovering over a node. A user can select a node which displays its full
dependency graph by lightening the saturation of all nodes and arcs in
the network not associated with the selected node. The table updates
with the attributes associated with that dependency graph. This can
be seen in figure 4 which shows the result of a user selecting the node
TABL-COBK. The associated information for the dependency graph
is shown in the table (not shown) and the user choose to export this
chain to a csv/xml/json for further testing.

The nodes are grouped by type along the axis and the type in en-
coded through the hue channel. Within each group, nodes can be
sorted and resized by the user, who selects a quantitative attribute from
the dropdown selectors on the filter pane. The nodes are initially sorted
alphabetically and are unsized. The colour of each arc encodes the
type of the parent node (eg. blue arcs are from blue PROG artifacts,
orange arcs are from orange TABL artifacts). Nodes are permitted to
overlap initially and then spread out along the axis as the user zooms
in. By making use of semantic zooming, which keeps the size of each
node fixed while reposition the node and arcs along the axis, we are
able to display thousands of nodes.

Complementing the table and arc diagram is a filter pane which
allows the user to reduce the dataset by selecting performance and us-
age ranges with the sliders and chose which groups to display. They
can also decide to resort the nodes alphabetically or by degree, perfor-
mance, usage, creation date or by lines of code. Entire groups can be
repositioned by clicking and dragging the group name within the drop-
down selector. As well, the user can resize each node by performance,
usage, or lines of code (LOC). These tools allow the user to browse
through subsets of the data without having a specific target in order to
find artifacts that may be compromising the performance of their sys-
tem. Should the user wish to locate a specific artifact, a search bar is
included in the upper right corner. Envisioned use cases for these se-
lections are discussed in Section 6 and the full what-why-how analysis



is shown table 2.

What: Data Node/Link data; quantitative, ordinal and cate-
gorical attributes .

Why: Tasks Find extremum, find outliers, compare network
topology, find similar items.

How: Encode Arc diagram layout, hue encodes type, opacity
encodes focus, size encodes user-selected quan-
titative attribute.

How: Facet Arc diagram faceted with a table and control
panel.

How: Reduce Filtering.

How: Manipu-
late

Zoom, pan, select, sort.

Scale: Manipu-
late

approx. 3000 nodes, approx. 15000 links.

Table 2. What-Why-How framework

5 IMPLEMENTATION

This visualization was implemented using the libraries D3, jQuery,
Bootstrap, DataTables.js, and underscore.js. The third party packages
bootstrap-multiselect.js, bootstrap-slider.js, chosen.js, react-rubaxa-
sortable.js and tinycolor.js were used for the select, search and slider
widgets. A designer was consulted at the beginning stages to help with
layout and colours, while all coding was done by the paper’s author.

The majority of the work was spent implementing the arc diagram
using D3, which proved to be quite challenging. There were no ex-
amples to start from as all the arc diagrams were static and only dis-
played a few hundred nodes at most. The biggest hurdle was handling
scale; D3 is designed to manipulate SVG elements, but SVG requires
the browser maintain an object model for each element. This leaves a
heavy memory footprint which becomes noticeable after a few thou-
sand elements are drawn. In our case, we were drawing over 18000
elements (arcs and nodes) which made the performance so poor the
system was unusable. The solution was to switch to HTML5’s can-
vas element, which draws the pixels on the page without having an
in-memory representation of the object just drawn. This means the
canvas element performs a lot better when many items are drawn, but
animation is more difficult because one cannot use D3’s inbuilt tweens
to animate as they rely on an in-memory DOM object transition been
states.

The other main challenge with implementing the arc diagram was
having to calculate the pixel position of each node after the user
changed any of the filter parameters. This was difficult because one
had to consider both the zoom level, the group position, the sort order,
and the three possible changes of state (a node being added, chang-
ing position, or being removed.) It turned out that following a rough
MVC pattern was the best way to have the three components interact
with one another. Here the the data was handled by a “model” (Data-
Handler.js), the index.html acted as the controller by reading the user
input and sending the filtered data to two “views” (arc diagram.js and
DataTables.js).

6 RESULTS

Below we present number of use cases demonstrating how SAPVis an-
swers the questions posed in the introduction. Overall we feel SAPVis
accomplishes most of its targets although more work is required to
improve the overall user experience and reduce cognitive load. This

includes adding basic functionality that weren’t permitted by time con-
straints, like a color legend, the ability to select multiple nodes at a
time, and the have the names of all the nodes in a dependency graph
displayed upon selection. The discussion that follows the use cases
below will address ways to improve the user experience as well as sug-
gest additional functionality and modifications for future iterations.

6.1 Use Case 1: Smarter testing

A SAP technician has just renamed a column in the COBK table and
wants to make the requisite changes in the programs which use the
table. For testing, he wants a list of the transaction codes which
call the programs that use COBK. He begins by entering “COBK”
in the search bar. The dependency graph is displayed but cluttered
amongst all the other nodes. In order to improve readability he hides
the background arcs and all the groups except “PROG”, “TCOD”, and
“TABL”and moves “TCOD” the top of the list by dragging from the
dropdown

dropdown menu. He chooses to sort by degree in order to reduce
edge crossings and is left with the view seen in figure 4. He uses the
zoom and pan to get a rough idea of how many transaction codes and
programs rely on this table, and then exports the chain as a CSV. He
uses CSV in a script which runs test on the given IDs to assure his
changes are error free.

6.2 Use Case 2: Browse poor or unused code

Best Buy asks a technician to improve the performance of their SAP
system, as it is taking too long to scan items and customers are getting
upset with long lines at checkout. The technician doesn’t know which
programs are causing the bottleneck so she decides to make a list of
programs that might need to be rewritten. Along with the ID of each
program, she wants to save its dependency graph so she knows what
should be tested if that program is modified. She begins by sorting
all the nodes by degree and resizing the nodes by performance, know-
ing that leftmost nodes with small radii are poor performers that are
used by many entities throughout the system. She selects a few of the
smallest nodes as seen in Figure 5, confirms their low performance
by looking at the attributes in the table, and exports their dependency
graphs. Next, she uses the sort dropdown menu to sort by usage and
adjusts the performance filter to select only the bottom 10%. To nar-
row the search further, she uses the second slider to select only those
items with a usage score above 90%. She is left with four low per-
forming but highly used programs. She selects each and exports.

She also decides to make a separate list of code that may longer be
used. Proceeding in much the same way as before, she sorts by degree
but this time looks at the rightmost side of each group, noting all those
orphaned programs with no incoming or outgoing edges. These are
artifacts that are not communicating with the rest of the system and
can likely be deleted. She again uses the sliders except this time lowers
the usage slider to only view those nodes with a usage score beneath
10% and documents those nodes which remain.

6.3 Use Case 3: Find duplicate code

While scanning through the table, a technician notices multiple pro-
grams with similar names, as seen in Figure 6. The technician also
notices the similar line counts and low usage scores for items 0110 -
0140 and suspects a previous developer duplicated a program rather
than updated it, thereby leaving a redundant copy of an old program.
To confirm his intuition, he selects each item from the table in order to
compare their network topologies. He notices they are identical with
the exception of one struct difference between them. The technician
later confirms this by looking at the code directly and sees the old ver-
sions are no longer used. By comparing the highlighted networks, the
technician was able to quickly estimate the degree of code similarity
between two programs and find redundancy in their system.

7 DISCUSSION AND FUTURE WORK

We consider SAPVis successful although incomplete at the time of
writing. Before putting the tool in front of users, there are a few ad-
ditions that need to be made in order to consider the prototype com-



Fig. 4. Here we see a dependency graph for TABL-COBK which shows the table (red) being called by more than a dozen programs (blue) which are
in themselves called from two transaction codes (orange). Here the use has filtered the selection by group, hiding all groups that are not PROG,
TCOD or TABL. The user has not decide to value the nodes by any attribute and therefore they are all set to a default radius. The attributes for
each node are displayed in the table with the selected node highlighted.

Fig. 5. The arc diagram sorted by degree and sized by value. Here we see the user has sorted the arc diagram in descending order of degree. The
have also sized by performance in order to find the low performing programs which are called by many other programs in the system. In this way
the user can find potential bottlenecks in their system.

plete. First, a legend so the types can be quickly distinguished, rather
than having the user mouse over each color to learn the type. Also,
the nodes should have their titles appear underneath once the user has
zoomed in sufficiently to prevent the cognitive load associated with
remembering which node has which ID. The other feature that needs
to be implemented is the ability to select and export multiple nodes at
once. Currently the user can either export the results of a filter or a
dependency graph but cannot export a set of hand selected nodes. As
well, dependency graphs are directed but our current system is show-
ing undirected edges. The colour of the arc indicates the type of the
parent node, but there is no way to determine the parent between arcs
of the same type short of looking it up in the table.

All of these additions are necessary before considering the proto-
type complete because currently the cognitive strain on the user is too
great; besides mousing over a node or referring to the table, there is no
visual reminder of the IDs of nodes within a dependency graph. Be-
sides these deficiencies, overall we feel SAPVis is successful. Unlike
2D force directed layouts,it is performant, allows on-the-fly filtering
and grouping, and is able to handle the scale of one SAP domain, ap-
proximately 3000 nodes and 15000 arcs. As well it is intuitive and

users are not faced with a steep learning curve as in the case of adja-
cency matrices.

SAPVas was designed to work alongside other debugging tools so
future extensions may include adding additional views to the dash-
board. One view we proposed initially (but decided to delay until re-
ceiving user feedback) was a collapsible tree view which would dis-
play the selected dependency graph. This would allow the user to
explore large subgraphs and hide sections they are not interested in.
As well, because only one subgraph would be displayed at a time, we
would be able to avoid the hairball issue that results from displaying
multiple interconnected subgraphs simultaneously. We would also like
to improve the search bar to search through attributes as well as IDs.

Once we make the improvements to finish the prototype, we plan
to get user feedback from domain experts in order to see how SAPVis
works in conjunction with their current work flow. One major weak-
ness of this study was lack of access to a SAP technician. Although the
data provider was a domain expert in the sense of understand the SAP
system, we did not have the opportunity to monitor the actual work
patterns of SAP technicians. Understanding which tools they used and
in which situations would have been very helpful in tailoring this tool



Fig. 6. A snapshot of the table showing potentially duplicate code.

to suit their needs. User feedback will help fill this gap.

Besides technical details such as the use of canvas instead of SVG
elements or how to use D3’s enter-update-exit design pattern, the main
takeaway lesson was to focus on rapid iteration at this early stage over
code robustness. It is more important to get a working prototype into
the hands of users than it is to make sure the code is sound, as some
features may turn out to be solving the wrong problems. This means
that, although the performance is less than optimal (we admit), the
focus as this stage is completing the last of the prototype functionality
in order to collect user feedback.

8 CONCLUSION

In this work we presented SAPVis, a tool to help SAP technicians visu-
alize their systems by displaying relationships between SAP artifacts
on an interactive arc diagram. We particularly focus on displaying
dependency graphs which show the chain of dependencies emanating
from a user selected artifact. This is useful as it allows developers to
search for unintended consequences of changes to an artifact and pro-
vides a quick visual estimate of code similarity between artifacts. As
well, we provide the user with manipulation tools that allow them to
filter, sort and resize the nodes along the axis based on attributes to find
extrema within their system. Although there has been work showing
the various ways static arc diagrams can be modified, and how they
can be used to augment other visualizations, to the best of our knowl-
edge) this is the first research to show how a dynamic and interactive
arc diagrams might be used.

ACKNOWLEDGMENTS

The author wishes to thank Tamara Munzner for her guidance and
CodeExcellence for their data.

REFERENCES

[1] J. Barnes and P. Hut. A hierarchical O(N log N) force-calculation algo-
rithm. pages 446–449, Dec 1986.

[2] N. Henry and J. Fekete. Matrix explorer: a dual-representation system
to explore social networks. IEEE Trans. on Visualization and Computer
Graphics, (5):677–684, Sept 2006.

[3] N. Henry and J.-D. Fekete. Matlink: Enhanced matrix visualization for
analyzing social networks. In Human-Computer Interaction INTERACT
2007, pages 288–302. Springer Berlin Heidelberg, 2007.

[4] N. Henry, J.-D. Fekete, and M. J. Mcguffin. Nodetrix: a hybrid visual-
ization of social networks. IEEE Trans. on Visualization and Computer
Graphics, 13:1302–1309, 2007.

[5] M. Jacomy, T. Venturini, S. Heymann, and M. Bastian. Forceatlas2, a
continuous graph layout algorithm for handy network visualization de-
signed for the gephi software. PLoS ONE, page e98679, June 2014.

[6] T. Kamada and S. Kawai. An algorithm for drawing general undirected
graphs. Information Processing Letters, pages 7 – 15, 1989.

[7] M. J. McGuffin. Simple algorithms for network visualization: A tutorial.
Tsinghua Science and Technology, pages 383–398, Aug 2012.

[8] T. Munzner. Visualization Analysis and Design. A K Peters, 2014.
[9] T. Nagel and E. Duval. A Visual Survey of Arc Diagrams. Oct 2013.

[10] SAP. MS Windows NT kernel description, 2015.
[11] S. van den Elzen and J. J. van Wijk. Multivariate network exploration and

presentation: From detail to overview via selections and aggregations.
IEEE Trans. on Visualization and Computer Graphics, pages 2310–2319,
2014.

[12] F. van Ham, H.-J. Schulz, and J. Dimicco. Honeycomb: Visual analysis
of large scale social networks. pages 429–442. 2009.

[13] M. Wattenberg. Visual exploration of multivariate graphs. In ACM CHI
2006 Conference on Human Factors in Computing Systems, pages 811–
819. ACM Press, 2006.



Name Code Description

User USER Stores read/write/edit permission‘’.
One user can have access to multi-
ple programs and TCODES

Program PROG A SAP program. Eg. Calculate va-
cation pay

Transaction
Code

TCOD The executable to run program(s).
One transaction code can activate
multiple programs. Users are ex-
pected to interact with the system
through TCODES.

Database
Table

TABL A table in the database. Eg. table of
all customer names and their con-
tact information.

View VIEW A compiled view of the database
that could include several tables.
For example, a database view could
return all outstanding payments to
international vendors.

Function FUNC One function can be used in mul-
tiple programs. A function can
be called by other functions. Eg.
CALCULATE GST.

Metadata TTAB Meta data about database tables.
Table definition buffers.

Structure STRU A data structure used by one or
more programs.

Sap Table TTYP A table stored in working memory
within a SAP system instead of in
the database.

Includes INCL Code fragments that can be used in
other programs. Includes promote
modularity and reusability in com-
plex systems.

Method METH Methods of classes

Function
Group

FUGR Function Groups organize functions
into logical units.

Table 1. List of artifacts within a SAP system


	Introduction
	Related Work
	Data and Task Abstractions
	Data Description
	Task Description

	Solution
	Implementation
	Results
	Use Case 1: Smarter testing
	Use Case 2: Browse poor or unused code
	Use Case 3: Find duplicate code

	Discussion and Future Work
	Conclusion

