Chapter 8: Arrange Spatial Data
Paper: Flow Radar Glyphs

Tamara Munzner
Department of Computer Science
University of British Columbia

Information Visualization (CPSC 547)
Mon October 6 2014

http://www.cs.ubc.ca/~tmm/courses/547-14#chap8
Arrange spatial data

Use Given

Geometry
 - Geographic
 - Other Derived

Spatial Fields
 - Scalar Fields (one value per cell)
 - Isocontours
 - Direct Volume Rendering
 - Vector and Tensor Fields (many values per cell)
 - Flow Glyphs (local)
 - Geometric (sparse seeds)
 - Textures (dense seeds)
 - Features (globally derived)
Idiom: choropleth map

- **use** given spatial data
 - when central task is understanding spatial relationships

- **data**
 - geographic geometry
 - table with 1 quant attribute per region

- **encoding**
 - use given geometry for area mark boundaries
 - sequential segmented colormap

http://bl.ocks.org/mbostock/4060606
Idiom: **topographic map**

- **data**
 - geographic geometry
 - scalar spatial field
 - 1 quant attribute per grid cell

- **derived data**
 - isoline geometry
 - isocontours computed for specific levels of scalar values

Land Information New Zealand Data Service
Idiom: isosurfaces

• data
 – scalar spatial field
 • 1 quant attribute per grid cell

• derived data
 – isosurface geometry
 • isocontours computed for specific levels of scalar values

• task
 – spatial relationships

Idioms: **DVR, multidimensional transfer functions**

- **direct volume rendering**
 - **transfer function** maps scalar values to color, opacity
 - no derived geometry

- **multidimensional transfer functions**
 - derived data in joint 2D histogram
 - horiz axis: data values of scalar func
 - vert axis: gradient magnitude (direction of fastest change)
 - [more on cutting planes and histograms later]

Vector and tensor fields

• data
 – many attribs per cell

• idiom families
 – flow glyphs
 • purely local
 – geometric flow
 • derived data from tracing particle trajectories
 • sparse set of seed points
 – texture flow
 • derived data, dense seeds
 – feature flow
 • global computation to detect features
 – encoded with one of methods above
Vector fields

• empirical study tasks
 – finding critical points, identifying their types
 – identifying what type of critical point is at a specific location
 – predicting where a particle starting at a specified point will end up (advection)

Idiom: similarity-clustered streamlines

• data
 – 3D vector field

• derived data (from field)
 – streamlines: trajectory particle will follow

• derived data (per streamline)
 – curvature, torsion, tortuosity
 – signature: complex weighted combination
 – compute cluster hierarchy across all signatures
 – encode: color and opacity by cluster

• tasks
 – find features, query shape

• scalability
 – millions of samples, hundreds of streamlines

Further reading

 – Chap 8: Arrange Spatial Data

• How Maps Work: Representation, Visualization, and Design. MacEachren.

• Overview of visualization. Schroeder and. Martin. In The Visualization Handbook,

• Overview of flow visualization. Weiskopf and Erlebacher. In The Visualization
Flow Radar Glyphs

• glyphs: complex combination of marks
 – more in Chapter 12!

• unsteady flow: changes over time
 – degenerate case: arrow glyph

• variations
 – magnitude scaled vs normalized
 – time ranges: normal, subset, inverted
 – uncertainty: filled, range min/max

• explicit guidance on when to use which variants!

Multiple scales

• all/overview
 – partitioned into regions w/ visual fusion

• some
 – compare neighboring regions

• one
 – finegrained structure inspection

• macro/micro readings common for glyphs
Comparison to previous work

• arrow glyphs
 – much more scalable
• path/streak lines
 – no clutter, avoids need for animation
Implementation & Validation

• GPU parallelism
 – both geometry and image-space (pixel-based) approaches

• validation
 – qualitative result image analysis
 • 3 application domains: CFD simulations
 – 2D air in closed room
 – 2D groundwater
 – 3D flow (cuboid)
 – expert feedback
Results

• qualitative result image analysis
• expert feedback
• 3 application domains
 – air in closed room
 – groundwater
 – 3D flow (cuboid)
2D air flow

- changing parameters
Results

- groundwater/wells simulation

- 3D flow