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What: SOCIAL MEDIA

BUSINESSES AND MARKETERS LOVE SOCIAL MEDIA!
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Why: Abnormal conversational threads
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How: FluxFlow

Twitter

Anomalous Threads
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Data Store:

Abnormal Retweet Threads Detection: A
Data mining approach

* One-Class Conditional Random Fields Model
(OCCRF)

— temporal dependency, due to mechanism in RT time
series data

— one-class nature. There is little to no example (or even
a clear definition) of true anomalies
— contains a set of hidden variables to capture the
underlying sub-structure of the sequential data
+ Extracted Feature for each single retweet
— User profile features: counts of followers, friends,
status

Data mining pipeline

Ranked RT threads with
abnormal scores

Feature vector time-series

RT threads
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Hidden states

RT Thread Visualization:
RT Thread Glyph
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— Temporal features: intervals between two adjacent
tweets in the sequence
. Hierarchical MDS view of threads from high dimensional User social connections at the intra- or
System interface . .
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User relationship graphs o ®)

Deep-Level Information for Input feature
vectors, model hidden states, raw tweets

Feature vectors [

summary of hidden states
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Raw tweets

Visualization techniques summary

How:Encode Glyph, Thread Timelines
Multiform, Overview/ Detail.
How-Facet linked highlighting.
Item filtering, Item aggregation,
How: Reduce Attribute aggregation, Elide,

Superimpose

How: Manipulate Highlighting, Project, Zoom

Task Summary

retweeting threads.

T1 Summarizing and aggregating important features of

— Glyph, Cluster View, MDS View
T2 Indicating characteristics and connections of involving

users.

— User relationship graphs

T3 Revealing temporal patterns of information spreading.

— Thread Timeline

T4 Facilitating visual data comparisons and correlations.

— Cluster View, MDS View

T5 Accessing deep-level information of the model and

input.

- E_hread Timeline, Features View, Status View, Tweets
iew

.

Evaluation

Datasets: two 10% Twitter feed datasets collected

during two significant events:

— 2012 Hurricane Sandy(52 million tweets)

— 2013 Boston Marathon Bombing(242 million
tweets)

Baseline: One-Class SVM (OCSVM) [Scholkopf et al.,

2001]

Ground truth: manually labeled by three annotators

to based on reports after the events




Comparison Results
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Accuracies of OCCRF and OCSVM in correctly
detecting rumors in the top-K retweeting
threads ranked by the models in datasets: a)
Hurricane Sandy, and b) Boston Bombing.
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Case Study of Hurricane Sandy

Critiques

Data

— Incorporate further content attribute(e.g., topics, tags, deeper
semantic analysis)

Data mining algorithm
— Improve on algorithm scalability and response time
— Decouple with specific models

— More insights about the model beyond hidden states, e.g.
interactions of model parameters

Visualization

— Timeline visualization need better reducing techniques to be
scalable for real social network data

— Better to show the “chain” of retweeting, and influence between
users

Evaluations

— Stronger ground truth for quantitative evaluation
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