Abnormal Retweet Threads Detection: A Data mining approach

- **One-Class Conditional Random Fields Model (OCCRF)**
 - temporal dependency, due to mechanism in RT time series data
 - one-class nature. There is little to no example (or even a clear definition) of true anomalies.
 - contains a set of hidden variables to capture the underlying sub-structure of the sequential data
- **Extracted Feature for each single retweet**
 - User profile features: counts of followers, friends, status
 - User network features: in-degree and out-degree
 - Temporal features: intervals between two adjacent tweets in the sequence

Data mining pipeline

- RT Thread Visualization: RT Thread Glyph
- RT Thread Visualization: RT Thread Timeline

Hierarchical cluster of RT threads by topics

- MDS view of threads from high dimensional feature space
- User social connections at the intra- or inter-thread level

Deep-Level Information for Input feature vectors, model hidden states, raw tweets

Visualization techniques summary

- **How: Encode**
 - Glyph, Thread Timelines
- **How: Facet**
 - Multiform, Overview/Detail, linked highlighting
- **How: Reduce**
 - Item filtering, Item aggregation, Attribute aggregation, Elide, Superimpose
- **How: Manipulate**
 - Highlighting, Project, Zoom

Task Summary

- T1 Summarizing and aggregating important features of retweeting threads.
 - Glyph, Cluster View, MDS View
- T2 Indicating characteristics and connections of involving users.
 - User relationship graphs
- T3 Revealing temporal patterns of information spreading.
 - Thread Timeline
- T4 Facilitating visual data comparisons and correlations.
 - Cluster View, MDS View
- T5 Accessing deep-level information of the model and input.
 - Thread Timeline, Features View, Status View, Tweets View

Evaluation

- **Datasets**: two 10% Twitter feed datasets collected during two significant events:
 - 2012 Hurricane Sandy (52 million tweets)
 - 2013 Boston Marathon Bombing (242 million tweets)
- **Baseline**: One-Class SVM (OCSVM) [Scholkopf et al., 2001]
- **Ground truth**: manually labeled by three annotators based on reports after the events
Comparison Results

Accuracies of OCCRF and OCSVM in correctly detecting rumors in the top-K retweeting threads ranked by the models in datasets: a) Hurricane Sandy, and b) Boston Bombing.

Case Study of Hurricane Sandy

Critiques

• Data
 – Incorporate further content attributes (e.g., topics, tags, deeper semantic analysis)
• Data mining algorithm
 – Improve on algorithm scalability and response time
 – Decouple with specific models
 – More insights about the model beyond hidden states, e.g., interactions of model parameters
• Visualization
 – Timeline visualization need better reducing techniques to be scalable for real social network data
 – Better to show the “chain” of retweeting, and influence between users
• Evaluations
 – Stronger ground truth for quantitative evaluation

Thank you