Arrange networks and trees

- **Node-link Diagrams**
 - Connections and Marks
 - NETWORKS, TREES

- **Adjacency Matrix**
 - Derived Table
 - NETWORKS, TREES

- **Enclosure**
 - Containment Marks
 - NETWORKS, TREES
Idiom: **force-directed placement**

- **visual encoding**
 - link connection marks, node point marks

- **considerations**
 - spatial position: no meaning directly encoded
 - left free to minimize crossings
 - proximity semantics?
 - sometimes meaningful
 - sometimes arbitrary, artifact of layout algorithm
 - tension with length
 - long edges more visually salient than short

- **tasks**
 - explore topology; locate paths, clusters

- **scalability**
 - node/edge density $E < 4N$

[Link to diagram and example](http://mbostock.github.com/d3/ex/force.html)
Idiom: \textbf{sfdp} (multi-level force-directed placement)

• data
 – original: network
 – derived: cluster hierarchy atop it

• considerations
 – better algorithm for same encoding technique
 • same: fundamental use of space
 • hierarchy used for algorithm speed/quality but not shown explicitly
 • (more on algorithm vs encoding in afternoon)

• scalability
 – nodes, edges: 1K-10K
 – hairball problem eventually hits

Idiom: **adjacency matrix view**

- **data: network**
 - transform into same data/encoding as heatmap
- **derived data: table from network**
 - 1 quant attrib
 - weighted edge between nodes
 - 2 categ attribs: node list x 2
- **visual encoding**
 - cell shows presence/absence of edge
- **scalability**
 - 1K nodes, 1M edges

![Matrix view of a five-node network](image)

Figure 7.5: Comparing matrix and node-link views of a five-node network.

a) Matrix view. b) Node-link view. From [Henry et al. 07], Figure 3b and 3a.

(Permission needed.)

Network matrix views can achieve very high information density, up to a limit of one thousand nodes and one million edges, just like cluster heatmaps and all other matrix views that uses small area marks.

Network matrix view

Data Types
- **network**

Derived Data
- table: network nodes as keys, link status between two nodes as values

View Comp.
- space: area marks in 2D matrix alignment

Scalability
- nodes: 1K
- edges: 1M

Connection vs. adjacency comparison

- adjacency matrix strengths
 - predictability, scalability, supports reordering
 - some topology tasks trainable

- node-link diagram strengths
 - topology understanding, path tracing
 - intuitive, no training needed

- empirical study
 - node-link best for small networks
 - matrix best for large networks
 - if tasks don’t involve topological structure!

Idiom: radial node-link tree

• data
 – tree

• encoding
 – link connection marks
 – point node marks
 – radial axis orientation
 • angular proximity: siblings
 • distance from center: depth in tree

• tasks
 – understanding topology, following paths

• scalability
 – 1K - 10K nodes

Idiom: treemap

• data
 – tree
 – 1 quant attrib at leaf nodes

• encoding
 – area containment marks for hierarchical structure
 – rectilinear orientation
 – size encodes quant attrib

• tasks
 – query attribute at leaf nodes

• scalability
 – 1M leaf nodes

Link marks: Connection and Containment

- marks as links (vs. nodes)
 - common case in network drawing
 - 1D case: connection
 - ex: all node-link diagrams
 - emphasizes topology, path tracing
 - networks and trees
 - 2D case: containment
 - ex: all treemap variants
 - emphasizes attribute values at leaves (size coding)
 - only trees

Tree drawing idioms comparison

• data shown
 – link relationships
 – tree depth
 – sibling order

• design choices
 – connection vs containment link marks
 – rectilinear vs radial layout
 – spatial position channels

• considerations
 – redundant? arbitrary?
 – information density?
 • avoid wasting space

Idiom: **GrouseFlocks**

- **data:** compound graphs
 - network
 - cluster hierarchy atop it
 - derived or interactively chosen
- **visual encoding**
 - connection marks for network links
 - containment marks for hierarchy
 - point marks for nodes
- **dynamic interaction**
 - select individual metanodes in hierarchy to expand/contract

Further reading

 – Chap 9: Arrange Networks and Trees

Topological Fisheye Views

• derived data
 – input: laid-out network (spatial positions for nodes)
 – output: multilevel hierarchy from graph coarsening

• interaction
 – user changed selected focus point

• visual encoding
 – hybrid view made from cut through several hierarchy levels

Topological Fisheye Views

• derived data
 – input: laid-out network (spatial positions for nodes)
 – output: multilevel hierarchy from graph coarsening

• interaction
 – user changed selected focus point

• visual encoding
 – hybrid view made from cut through several hierarchy levels

[Fig 4,8. Topological Fisheye Views for Visualizing Large Graphs. Gansner, Koren and North, IEEE TVCG 11(4), p 457-468, 2005]
Coarsening requirements

• uniform cluster/metanode size
• match coarse and fine layout geometries
• scalable

Coarsening strategy

• must preserve graph-theoretic properties
• use both topology and geometry
 – topological distance (hops away)
 – geometric distance - but not just proximity alone!
 • just contracting nodes/edges could create new cycles
• derived data: proximity graph

what not to do!

2-D point set Delaunay triangulation relative neighborhood graph

[Fig 10, 12. Topological Fisheye Views for Visualizing Large Graphs. Gansner, Koren and North, IEEE TVCG 11(4), p 457-468, 2005]
Candidate pairs: neighbors in original and proximity graph

• proximity graph: compromise between larger DT and smaller RNG
 – better than original graph neighbors alone
 • slow for cases like star graph

• maximize weighted sum of
 – geometric proximity
 • goal: preserve geometry
 – cluster size
 • goal: keep uniform cluster size
 – normalized connection strength
 • goal: preserve topology
 – neighborhood similarity
 • goal: preserve topology
 – degree
 • goal: penalize high-degree nodes to avoid salient artifacts and computational problems
Hybrid graph creation

- cut through coarsening hierarchy to get active nodes
 - animated transitions between states

[Fig 10, 12. Topological Fisheye Views for Visualizing Large Graphs. Gansner, Koren and North, IEEE TVCG 11(4), p 457-468, 2005]
Final distortion

• geometric distortion for uniform density
• (colorcoded by hierarchy depth just to illustrate algorithm)
 – compare to original
 – compare to simple topologically unaware fisheye distortion

[Fig 2,15. Topological Fisheye Views for Visualizing Large Graphs. Gansner, Koren and North, IEEE TVCG 11(4), p 457-468, 2005]