

PerTabVIS : Project Update

Chuan Zhu (m.s.)

4

Project Introduction

151 -

.

.....

Progress

Future Work

14/11/2011

Periodic Table

- First proposed by [Dmitri Mendeleev, 1869]
 Reveals the relationship between elements
 Predicts the possible properties of the yet discovered ones
- Looks like...

Background

Vanadium

50.942

41

Nb

Niobium

92.906

73

Та

Tantalum 180.948

105

Db

Dubniu

(262)

	Group 1a		drogen 00794	- atomic numbe - symbol - atomic weight (or mass numb of most stable isotope if in	r atomic n left-hand second is having the same colu- part deter column ha This a 1869, bef	dic table arrang number, starti corner and co by the numb e same numbe umn. Since the mines the che ave similar che irrangement of ore many of th
Period 1	Hydrogen 1.00794	Group 2a		parentheses)	elements filled in, r has been	Il logic of the whose exister most recently l isolated experi anthanide si
Period 2	Lithium 6.941	Beryllium 9.0122				89–103) are They are pla read.
Period 3	Na Sodium 22.9898	Magnesium 24.305	Group 3b	Group 4b	Group 5b	Group 6b
Period 4	K	Ča	Sc	Ti	23 V	Čr

Scandium

44.956

39

Y

Yttrium

88.906

57-71*

Lanthanides

89-103**

Actinides

Titanium

47.87

40

Zr

Zirconium

91.22

72

Hf

Hafnium

178.49

104

Rf

(261)

iges the chemical elements in two ways. The first is by ting with hydrogen (atomic number = 1) in the upper continuing in ascending order from left to right. The nber of electrons in the outermost shell. Elements per of electrons in the outermost shell are placed in the ne number of electrons in the outermost shell in large semical nature of an element, elements in the same emical properties.

of the elements was devised by Dmitri Mendeleev in the elements now known were discovered. To maintain he table, Mendeleev allowed space for undiscovered ence he predicted. This space has since been partly by the addition of elements 104-112. Element 112 rimentally but not yet officially named. †

series (elements 57-71) and the actinide series re composed of elements with Group 3b chemical laced below the main body of the table to make it

Group

8

26

Fe

Iron

55.845

44

Ru

authenium

101.07

76

Os

Osmium 190.2

108

Hs

Hassium (265)

Group

8

27

Co

Cobalt

58.9332

Rh

Rhodium

102.905

77

Ir

Iridium 192.2

109

Mt

(268)

Meitneriu

Ds

(281)

Rg

(280)

(277)

Group

7b

25

Mn

Manganese 54.9380

43

Τс

echnetium

(98)

75

Re

Rhenium 186.2

107

Bh

Bohrium

(264)

Chromium

51.996

42

Mo

10lybden 95.94

w

Tungsten 183.84

106

Sq

eaborgiu

(266)

Noble Metals Nonmetals gases

151 -

em	in large e same leev in naintain								Group 0
1	covered n partly ent 112 series			Group 3a	Group 4a	Group 5a	Group 6a	Group 7a	Helium 4.0026
	hemical make it			5 B Boron 10.811	Carbon 12.011	7 Nitrogen 14.0067	8 Oxygen 15.9994	9 F Fluorine 18.9984	10 Neon 20.183
	Group 8	Group 1b	Group 2b	13 Al Aluminum 26.9815	Silicon 28.086	Phosphorus 30.9738	16 S Sulfur 32.066	Chlorine 35.453	18 Argon 39.948
	Nickel S8.69	Copper 63.546	2n Zn 2inc 65.39	Gallium 69.72	Germanium 72.61	33 As Arsenic 74.9216	Selenium 78.96	Bromine 79.904	Krypton 83.80
	Palladium	47 Ag Silver 107.868	Cadmium	49 In Indium 114.82	50 Sn 118.71	Sb Antimony 121.76	Tellurium 127.60	53 lodine 126.9045	54 Xeon 131.29
	Platinum 195.08	79 Au Gold 196.967	B0 Hg Mercury 200.59	TI Thallium 204.38	Pb Lead 207.2	83 Bi Bismuth 208.98	Polonium (210)	Astatine (210)	Radon (222)
Ī	110	111	112†						

+ Until official names are given to new elements, names based on a Latin translation of the atomic number are used; e.g. ununbium (Latin unus '1' + unus '1' + bi- '2') for element 112.

*LANTHANIDES	La La Lanthanum 138.91	58 Cerium 140.12	59 Pr Praseodymium 140.908	Neodymium 144.24	Promethium (145)	Samarium 150.36	Europium 151.96	Gadolinium 157.25	Tb Terbium 158.925	Dysprosium 162.50	67 HO Holmium 164.930	68 Er Erbium 167.26	69 Tm Thulium 168.934	Ytterbium 173.04	Lutetium 174.97
**ACTINIDES	Actinium (227)	70 Th Thorium 232.038	91 Pa Protactinium 231.036	92 U Uranium 238.03	93 Np Neptunium (237)	94 Pu Plutonium (244)	95 Am Americium (243)	96 Cm Curium (247)	97 Bk Berkelium (247)	Californium (251)	99 Es Einsteinium (252)	Fermium (257)	Mendelevium (258)	Nobelium (259)	103 Lr Lawrencium (262)

Element	Symbol	Atomic Number	Element	Symbol	Atomic Number	Element	Symbol	Atomic Number	Element	Symbol	Atomic Number	Element	Symbol	Atomic Number	Element	Symbol	Atomic Number	Element	Symbol	Atomic Number	Element	Symbol	Atomic
Actinium	Ac	89	Cadmium	Cđ	48	Einsteinium	Es	99	Holmium	Но	67	Meitnerium	Mt	109	Phosphorus	P	15	Ruthenium	Ru	44	Terbium	Tb	65
Aluminum	Al	13	Calcium	Ca	20	Element 112	-	112	Hydrogen	н	1	Mendelevium	Md	101	Platinum	Pt	78	Rutherfordium	RÍ	104	Thallium	TI	81
Americium	Am	95	Californium	Cf	98	Erbium	Er	68	Indum	in	49	Mercury	Ha	80	Plutonium	Pu	94	Samarium	Sm	62	Thorium	Th	90
Antimony	Sb	51	Carbon	C	6	Europium	Eu	63	lodine	1	53	Molybdenum	Mo	42	Polonium	Po	84	Scandium	Sc	21	Thulium	Tm	69
Argon	Ar	18	Cerium	Ce	58	Fermium	Fm	100	Iridium	lr.	77	Neodymium	Nd	60	Potassium	ĸ	19	Seaborgium	Sq	106	Tin	Sm	50
Arsenic	As	33	Cesium	Cs	55	Fluorine	F	9	Iron	Fe	26	Neon	Ne	10	Praseodymium	n Fr	59	Selenium	Se	34	Titanium	Ti	22
Astatine	At	85	Chlorine	CI	17	Francium	Fr	87	Krypton	Kr	36	Neptunium	Np	93	Promethium	Pm	61	Silicon	Si	14	Tungsten	w	7.4
Barium	8.0	56	Chromium	Gr	24	Gadolinium	Gđ	64	Lanthanum	La	57	Nickel	14	28	Protactinium	Pa	91	Silver	Ag	47	Uranium	U	92
Berkelium	8k	97	Cobalt	Co	27	Gallium	Ga	31	Lawrendum	Lr	103	Nicbium	Nb	41	Radium	Ra	88	Sodium	Na	11	Vanadium	v	23
Beryllium	Be	4	Copper	Cu	29	Germanium	Ge	32	Lead	Pb	82	Nitrogen	14	7	Radon	Rn	86	Strontium	Sr	38	Xenon	Xe	54
Bismuth	Bì	83	Curium	Cm	96	Gold	Au	79	Lithium	Li	3	Nobelium	No	102	Rhenium	Re	75	Sulfur	\$	16	Ytterbium	Yb	70
Bohrium	Eh	107	Darmstadtium	n Ds	110	Hafnium	Hf	72	Lutetium	Lu	71	Osmium	Os	76	Rhodium	Fth	45	Tantalum	Ta	73	Yttmium	Y	39
Boron	8	5	Dubnium	Db	105	Hassium	Hs	108	Magnesium	Mg	12	Oxygen	0	8	Roentgenium	Rg	111	Technetium	Tc	43	Znc	Zn	30
Bromine	Br	35	Dysprosium	Dy	66	Helium	He	2	Manganese	Mn	25	Palladium	Pd	46	Rubidium	Rb :	37	Tellutium	Te	52	Zirconium	Zr	40

Catherine Hawkes, Cat & Mouse

14/11/2011

Period 5

Period 6

Period 7

Potassium

Rb

Ruhidium

85.47

55

Cs

Cesium 132,905

87

Fr

Francium (223)

39.098

Calcium

40.08

38

Sr

Strontium

87.62

56

Ba

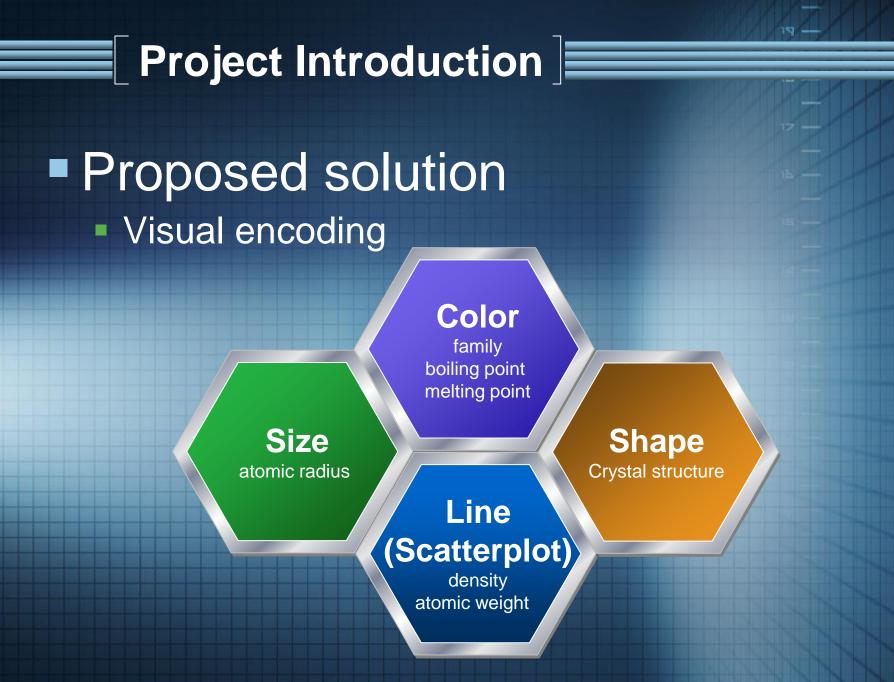
Barium

88

Ra

Radium

(226)


137.33

Project Introduction]

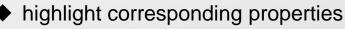
Domain & Task

- PerTabVIS is to provide a visualized and interactive way for general use.
- Show the basic information of periodic table
 - Effective encoding method.
- Allow users to see and compare whatever they are interested in.
 - Easy to use.

14/11/2011

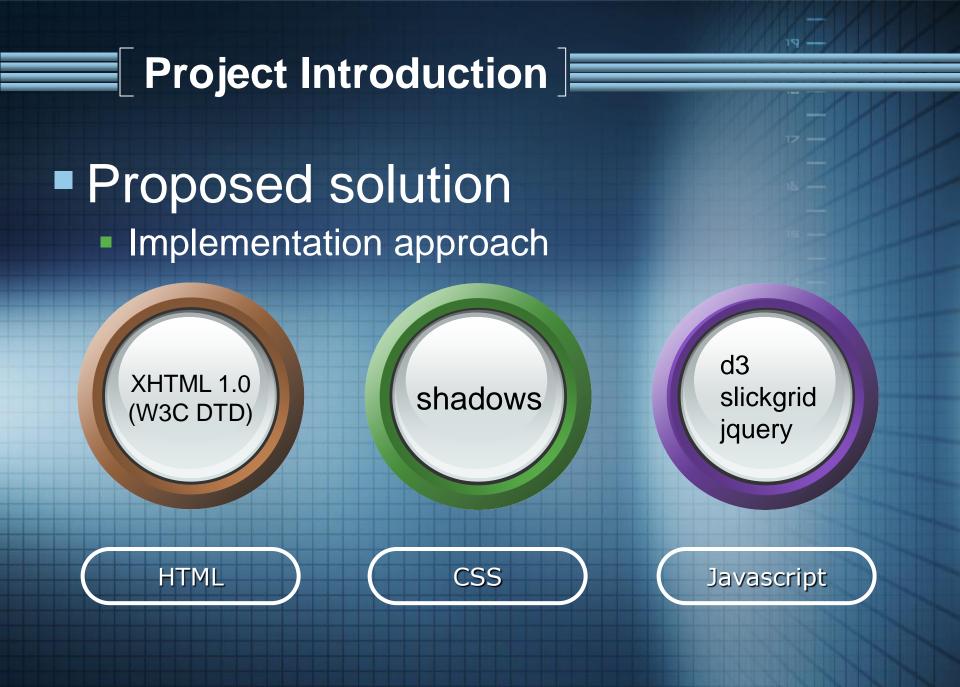
University of British Columbia

14/11/2011


Project Introduction

Proposed solution View methods

Single


Multiple

elements periodic table
elements property table

- select and filter the corresponding objects in different panels
- show the elements properties in either table or parallel coordinates

14/11/2011

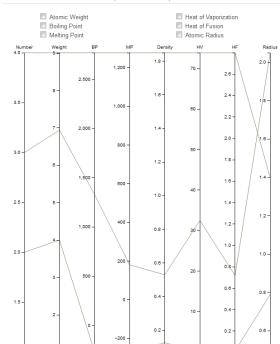
14/11/2011

Dataset extraction

 Get original dataset from "elements" example on the Improvise website and Wikipedia

Abstract dataset for general use

	Atomic Number	Sy	Name	Famil	Atomic We	Boiling P	Melting P	Density	Heat of	Heat of F	Atomic Ra	Crystal S
	1	Н	hydrogen	0	1.00794	-252.7	-259.2	0.071	0.108	0.014	0.79	hexagonal
	2	He	helium	9	4.002602	-268.9	-269.7	0.126	0.02	0.005	0.49	hexagonal
	3	Li	lithium	1	6.941	1330	180.5	0.53	32.48	0.72	2.05	body-cent
	4	Be	beryllium	2	9.0123182	2770	1277	1.85	73.9	2.8	1.40	hexagonal
	5	В	boron	4	10.811	NaN	2030	2.34	128	5.3	1.17	rhombohedral
	6	С	carbon	5	12.0107	4830	3727	2.26	171.7	NaN	0.91	hexagonal
	7	Ν	nitrogen	6	14.00674	-195.8	-210	0.81	0.666	0.086	0.75	hexagonal
	8	0	oxygen	7	15.9994	-183	-218.8	1.14	0.815	0.053	0.65	cubic
	9	F	fluorine	8	18.9984032	-188.2	-219.6	1.505	0.755	0.061	0.57	cubic
	10	Ne	neon	9	20.1797	-246	-248.6	1.2	0.422	0.08	0.51	face-cent
	11	Na	sodium	1	22.98977	892	97.8	0.97	24.12	0.62	2.23	body-cent
	12	Mg	magnesium	2	24.305	1107	650	1.74	32, 517	2.14	1.72	hexagonal
_	13	A1	aluminum	4	26.981538	2450	660	2.7	67.9	2.55	1.82	face-cent
	14	Si	silicon	5	28.0855	2680	1410	2.33	40.6	11.1	1.46	face-cent
	15	Р	phosph	6	30.973762	NaN	NaN	NaN	NaN	NaN	1.23	monoclinic
	16	S	sulfur	7	32.066	444.6	119	2.07	3.01	0.34	1.09	orthorhombic
	17	C1	cllorine	8	35.4527	-34.7	-101	1.56	2.44	0.77	0.97	orthorhombic
-	18	Ar	Arargon	9	39.948	-185.8	189.4	1.4	1.56	0.281	0.88	facce-cen
	19	Κ	potassium	1	39.0983	760	63.7	0.86	18.9	0.55	2.77	body-cent
	20	Ca	calcium	2	40.078	1440	838	1.55	36.74	2.1	2.23	face-cent


14/11/2011

PerTabVIS

PerTabVIS

Select Property	Н																	He	Ì				Prope	rties v.s	. Proper	ties		
 Atomic Weight Boiling Point Melting Point 	Li	Be											B	<u>C</u>	N	<u>0</u>	E	Ne		8	Atomic Boiling Melting	Point				Heat of Va Heat of Fu Atomic Ra	usion	
 Heat of Vaporization Heat of Fusion 	<u>Na</u>	Mg											AI	<u>Si</u>	P		<u>CI</u>	Ar	N 4.0	lumber	Weight 9 7	E	iP	MP	Density	нv	HF 7	Ra
Atomic Radius	ĸ	<u>Ca</u>	Sc	П	V	Cr	Mn	Fe	<u>Co</u>	Ni	<u>Cu</u>	Zn	Ga	Ge	As	<u>Se</u>	Br	Kr				2,500 -	1,20	0 -	1.8 -	70 -	2.6 -	2.0
	Rb	<u>Sr</u>	Y	Zr	Nb	Mo	Tc	Ru	<u>Rh</u>	Pd	Ag	Cd	ln	<u>Sn</u>	<u>Sb</u>	Te	Ţ	<u>Xe</u>	3.6	5 -	8 -		1,00	0 -	1.6 -	60 -	2.4 -	1/8 -
	<u>Cs</u>	Ba	<u>La-Lu</u>	Hf	Ta	W	<u>Re</u>	<u>Os</u>	ī	<u>Pt</u>	<u>Au</u>	Ha	П	<u>Pb</u>	Bi	<u>Po</u>	<u>At</u>	<u>Rn</u>			7-	2,000 -			1.4 -		2.2 -	V
	Er	<u>Ra</u>	<u>Ac-Lr</u>	Rf	Db	<u>Sg</u>	Bh	<u>Hs</u>	<u>Mt</u>	<u>Ds</u>	Rg	<u>Cn</u>	<u>Uut</u>	<u>Uua</u>	<u>Uup</u>	<u>Uuh</u>	<u>Uus</u>	<u>Uuo</u>	3.0				80	0 -		50 -	2.0 -	1.6 -
Family						_	_	_		_	_	_	_						•		e -	1,500 -	60	0 -	1.2 -		1.8 -	1.4 -
Hydrogen		La	Ce	Pr	Nd	Pm	<u>Sm</u>	Eu	Gd	Tb	Dy	Ho	Er	Im	Yb	Lu			2.6	5	_				1.0 -	40 -	1.4 -	
Alkali Metals Alkaline Earth Metals Transition Metals		Ac	Th	<u>Pa</u>	U	Np	Pu	Am	<u>Cm</u>	Bk	<u>Cf</u>	Es	Em	Md	No	Ŀr			2.0			1,000 -	40	0 -	0.8 -	30 -	1.2 -	1.2 -
 Boron Group Carbon Group Nitrogen Group 								Ele	ements	s Prope	ərty								2.0		4-				,		1.0 -	1.0 -
Chalcogens Halogens Nobel Gases	Name H		Atomic 1	Num	Atomic 1.00794	-	Boiling -252.7		Melting -259.2		Density 0.071		Heat of 0.108	Vapo	Heat of 0.014		Atomic 0.79	Radi	2.0		3-	500 -	20	0+	0.8-	20 -	0.8 -	1.0 -
Lanthanides	He		2		4.002602		-268.9		-269.7		0.126		0.02		0.005		0.49								0.4 -		0.6 -	0.8 -
Actinides	Li Be		3		6.941 9.012318		1330 2770		180.5 1277		0.53		32.48 73.9		0.72		2.05		1.6	5 -				0 -	0.4	10 -	0.4 -	
																					2 -	\						

157 -

14/11/2011

Future Work

To-do list

- How about if there is no value for a property? Or say that it doesn't exist.
- Comparison for any element with any property.
- Corresponding connection among different panels.
 - Compatibility and performance under different browsers.

Browser	Perform	nance
	Speed	Validity
Chrome	Fast	High
IE	Fast	Low
Firefox	Low	High
Opera	Fast	Low

19 -

14/11/2011

14/11/2011

14/11/2011

Thank You !