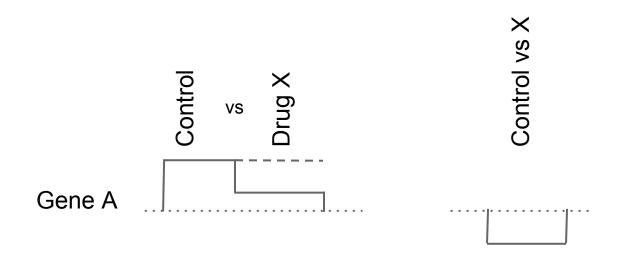
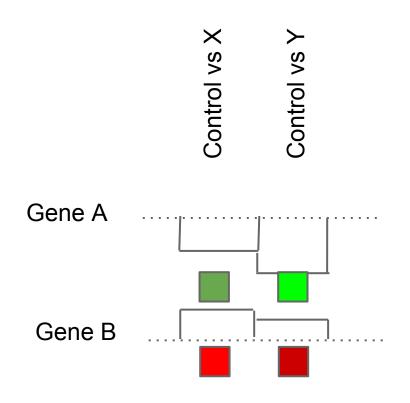
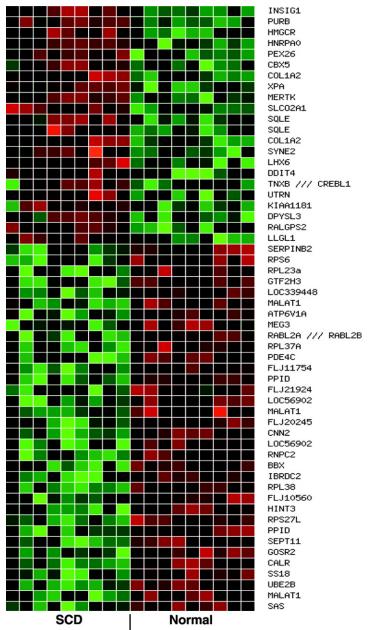

Heat²map: enriched differential gene expression heatmap


Project Update

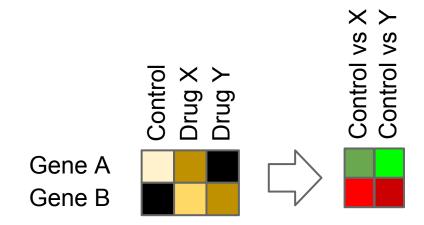
November 14, 2011 Anton Zoubarev


Gene expression



Differential gene expression

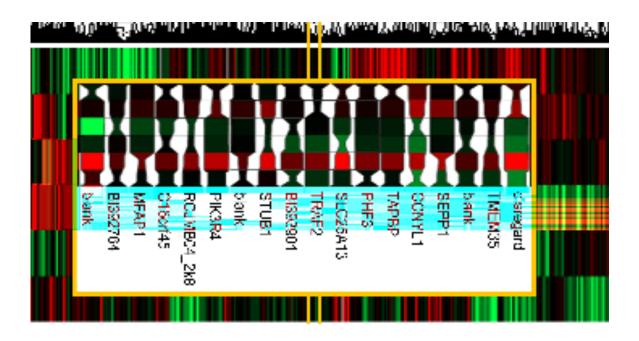
Differential gene expression heatmap



http://physiolgenomics.physiology.org/content/21/3/293/F1.expansion.html

What else do we need to encode?

- Uncertainty (statistical significance)
- We lose some information like expression levels. Can we bring them back?



Find differences, similarities, variability between groups of genes or conditions in terms of direction of change in gene expression, its magnitude, its statistical significance, and baseline expression level

Attribute	Type	Range
direction of change in gene expression	binary	up down
magnitude of change (baseline vs condition)	quantitative (log transformed)	06
p value (a measure of statistical significance)	quantitative	01
expression level at the baseline	quantitative	varies

Attribute	Type	Range
direction of change in gene expression	binary	up down
magnitude of change (baseline vs condition)	quantitative (log transformed)	06 5 bins are ok
p value (a measure of statistical significance)	quantitative ordinal	01 not signifcant low medium high
expression level at the baseline	quantitative binary	varies on/off modulation

Dataset size : 200 x 200 cells = 8×5 pixels for each cell

Enriched Heatmaps for Visualizing Uncertainty in Microarray Data by Clemens Holzhüter, Hans-Jörg Schulz, and Heidrun Schumann - poster at Eurographics VCBM 2010

ATLAC		Genes		Conditions	(Organism	
		nfkbia aspm saa4	up/down in	kidney liver		Any species	
BETA	Search Atlas View results	as: O table O	heatmap 🗹	expand condition	ns search with EFO		

View as table Number of studies **Factor Value** NFKBIA Aspm ASPM Saa4 UP DN UP UP UP UP UP DN DN DN DN DN Liver (organismpart) 10 9 2 4 4 Kidney (organismpart) 4 3 3 Fetal liver (organismpart) 1 1 1 Clear cell sarcoma of the kidney (diseasestate) 1 1

Done: 59 atlas records found in 34888 ms. Total processing time: 35446 ms.

17 Solr experiment hits (17 used), in 476 ms.

9 Solr gene hits (9 used), in 82 ms.

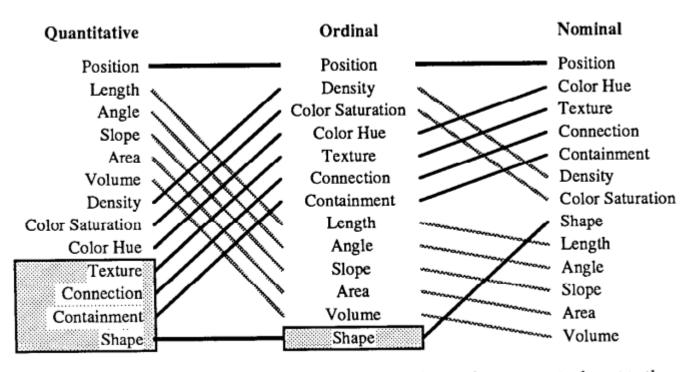


Fig. 15. Ranking of perceptual tasks. The tasks shown in the gray boxes are not relevant to these types of data.

Automating the Design of Graphical Presentations of Relational Information. Jock Mackinlay, ACM Transaction on Graphics, vol. 5, no. 2, April 1986, pp. 110-141.

Marks

Line (vertical or horizontal)
Rectangle

Attribute	Type	Range	Visual channel
direction of change in gene expression	binary	up down	position hue
magnitude of change	quantitative	5 bins	position length/area ligthness saturation
p value	ordinal	not signifcant low medium high	position length/area lightness saturation
expression level at the baseline	binary	on/off modulation	position hue

More constraints

An encoding may work for one cell but what about heatmap as whole?

Visual channel separability?

Use some of conventions established in the field (try to not surprise the user too much).

- Potential users interviewed
- Data type abstraction identified
- Simple heatmap drawing framework implemented
- Shrink the set of possible encodings even further
- Evaluate families of possible encodings
- Extract data
- Implement a couple of best solutions