

Paper: Time-oriented

Time-oriented vs. time-series

Time-oriented: the data is somehow connected to time examples: interval, time points

Time-series: linear sequential record with same sampling step examples: sound, seismographs, history

Why do that?

- Ubiquitous in many application domains
- Reveal trend for better understanding and prediction
- Visualizing derived values, identifying correlations, Identifying anomalies beyond obvious outliers

Analyzing methods

Challenges

- Large amount of data
- High frequency time-series
- Too many attributes to concern

Methods

Temporal data abstraction Principal Component-based Analysis (PCA)

Clustering

Temporal data abstraction

PCA-- Principal Component-based Analysis

Global

Advantage

Compressed description of correlations for better understanding of underlying features and trends

An example

NUMwarm
NUMsumdays
NUMhotdays
MEANTavg
MEANTmax
1893~1997

Summary for "Method" paper

Critiques

Strength: clear structure for designer to start
Unmentioned: how to process the raw data? Which method to choose?

Application1: pattern search

Paper reference

Interactive Pattern Search in Time Series Buono, P., C., Khella, A. Proc. VDA 2005.

Functions

Deal with long time series of multiple heterogeneous variables

Filter the data and reduce the scope of the search

Perform a specific pattern search

Application1: pattern search

Interface for multi-variable view

Application1: 3 steps for pattern search

Application1: pattern search algorithm

 $D(Q,C) = \sum_{i=1}^{n} (Q_i - C_i)^2$

Offset? Similar?

Options for constrains

- Offset translation
- Magnitude scaling
- 🖕 Linear trend removal
- Noise reduction

Application1: pattern search—Critiques

Strength

- Successful to improve the flexibility of pattern search Scale and offset options
- Easy and clear interface to handle

Weakness

Not in interactive level when dealing with larger dataset
Not able to deal with complex operation among data steams

Application2: ChronoLenses Paper reference **Exploratory Analysis of Time-series with ChronoLenses** Jian Zhao, Fanny Chevalier. IEEE TVCG 17(12):2422-2431 2011 (Proc. InfoVis 2011). Background Support more elaborate task Deriving new time-series from the original data

An iterative manner to process data in pipeline

Application2: ChronoLenses

User interface

Application2: ChronoLenses

2 main tasks

(T1)Single-data stream transformation (e.g. Fourier Trans, remove means)
(T2)Cross-data stream analysis (e.g. Subtraction, inner product)

- Lens & parameters
 - $\langle \theta |_{filter}(\cdot, \theta) \rangle$: Hide some streams according to the parameter
 - $= \ell_{scale}(\cdot, s)$: Scale some streams according to the parameter
 - $\underset{l}{\bullet} \ell_{unary}(\cdot) : \text{Similar to (T1)}$ $\underset{linary}{\bullet} \ell_{binary}(\cdot, \cdot) : \text{Similar to (T2)}$

Pipeline

Application2: ChronoLenses-Critiques

Strength

Flexible interface Strong process ability for complex tasks Immediate response when moving the lens Domain independent

Weakness

Layering and Tree-view limitation Large jump might occur when lens highly integrated Similar to microscope

