Required Readings

Hierarchical Parallel Coordinates for Exploration of Large Datasets Ying-Huey Fua, Matthew O. Ward, and Elke A. Rundensteiner, IEEE Visualization ’99.

Further Reading

Big Picture

- covered so far
 - design levels
 - problem, abstraction, encoding/interaction, algorithm
 - methods
 - taxonomy of visualization design concerns

- next stage: use these ideas for analysis and design
 - analyze previously proposed techniques and systems
 - design new techniques and systems

- me: this lecture as example (and graphs/trees)
- you: project proposal, topic presentations
Analysis Via Levels and Methods

- examples in this and graphs/trees lecture
- note: only sometimes does this analysis occur in paper itself!
 - you need to interpret

- (also something to do in your own project!)
Multiscale Scatterplots

- blur shows structure at multiple scales
- convolve with Gaussian
- slider to control scale parameter interactively
- easily selectable regions in quantized image

Problem and Abstraction Levels

- (problem characterization: generic network exploration)
 - minimal problem context; paper is technique-driven not problem-driven

- task abstraction: selection and filtering at different scales
 - within scatterplots
Abstraction Level: Data

- original data: relational network
 - links between Java classes
- derived attributes: 2 structural metrics for network
 - edge strength: cluster cohesiveness
 - sw engr: logical dependencies between classes
 - edges below color-coded by metric
- thus: table of numbers

Encoding/Interaction Level

- **basic solution:**
 - visual encoding technique: scatterplots
 - mark: points. channels: horiz and vert position
 - interaction technique: range sliders to filter max/min

- **limitations**
 - interesting areas might not be easy to select as rectangular regions, esp for complex derived attributes

Multiscale Scatterplot Selection Technique

- new encoding: derived space created from original scatterplot image
 - greyscale patches forming complex shapes
 - enclosure of darker patches within lighter patches
- new interaction:
 - simple: sliders for filter size s and number of levels k
 - complex: single click to select all items $\geq k$

Multiscale Scatterplot Selection Technique

- algorithm level: creating derived space
 - greyscale intensity is combination of
 - blurred proximity relationships from original scatterplot image: convolve with Gaussian filter
 - point density in original scatterplot image
 - quantize image into k levels

Method: Linked Views

- second linked view: 3D node-link network
- patch selection in blurred scatterplot view shows corresponding components in network view
- selection in one view filters what is shown in the other

Results: IMDB

- original data: IMDB graph
- metrics: network centrality, node degree
- 3 hubs selected in network view

Results: IMDB 2

- single click in blurred scatterplot view selects entire clique

Critique

strengths
- successful construction and use of derived space
- appropriate validation
- qualitative discussion of result images to show new technique capabilities
- synergy between encoding and interaction choices

weaknesses
- somewhat tricky to follow thread of argument since intro/framing focuses on network exploration, but fundamental technique contribution more about scatterplot encoding/interaction
Critique

- strengths
 - successful construction and use of derived space
 - appropriate validation
 - qualitative discussion of result images to show new technique capabilities
 - synergy between encoding and interaction choices
- weaknesses
 - somewhat tricky to follow thread of argument since intro/framing focuses on network exploration, but fundamental technique contribution more about scatterplot encoding/interaction
Hierarchical Parallel Coordinates

- technique-driven paper
 - (no problem characterization)
- scale up parallel coordinates to large datasets
 - limitation: overplotting/occlusion

[Figs 1, 2. Fua, Ward, and Rudensteiner. Hierarchical Parallel Coordinates for Visualizing Large Multivariate Data Sets. IEEE Visualization 99.]
Parallel Coordinates: Basics

- scatterplot limitation: vis enc with orthogonal axes
 - only 2 attribs with spatial position channel in plane
- instead, line up axes in parallel to show many attribs with position channel
 - item shown with line with k segments (not as point)
Par Coord Tasks: Showing Correlation

- pos corr: straight lines; neg corr: all cross at single point

Figure 3. Parallel Coordinate Plot of Six-Dimensional Data Illustrating Correlations of $p = 1, .8, .2, 0, -.2, -.8, \text{ and } -1$.

Par Coord Tasks: Showing Correlation

- strong neg corr between two final axis pairs

![Figure 1](image)

[Fig 1. Fua, Ward, and Rudensteiner. Hierarchical Parallel Coordinates for Visualizing Large Multivariate Data Sets. IEEE Visualization 99.]

- visible patterns only between neighboring axis pairs
- how to pick axis order?
 - usual solution: reorderable axes, interactive exploration
 - same weakness as many other techniques
 - downside: human-powered search
 - not directly addressed in HPC paper either
Hier Par Coords: Abstraction

- data abstraction
 - original data: table of numbers
 - derived data:
 - hierarchical clustering of items in table
 - cluster stats: # points, mean, min, max, size, depth
 - cluster density: points/size
 - cluster proximity: linear ordering from tree traversal

- task abstraction
 - finding correlations
 - finding trends, outliers at multiple scales
HPC: Encoding Derived Data

- vis enc: variable-width opacity bands
 - show whole cluster, not just single item
 - min/max: spatial position
 - cluster density: transparency at mean point
 - interpolate transparency between these

[Fig 3. Fua, Ward, and Rudensteiner. Hierarchical Parallel Coordinates for Visualizing Large Multivariate Data Sets. IEEE Visualization 99.]
interactively change level of detail to navigate cluster hier

[Fig 4. Fua, Ward, and Rudensteiner. Hierarchical Parallel Coordinates for Visualizing Large Multivariate Data Sets. IEEE Visualization 99.]
HPC: Encoding Derived Data

- vis enc: color based on cluster proximity derived attrib
- resolves ambiguity from crossings, clarifies structure

[Fig 6. Fua, Ward, and Rudensteiner. Hierarchical Parallel Coordinates for Visualizing Large Multivariate Data Sets. IEEE Visualization 99.]
HPC: Magnification Interaction

- dimensional zooming: use all available space
- method: linked view to show true extent

[Fig 8. Fua, Ward, and Rudensteiner. Hierarchical Parallel Coordinates for Visualizing Large Multivariate Data Sets. IEEE Visualization 99.]
Critique

Strengths
- Can be useful with additional views.

Weaknesses
- Major learning curve, difficult for novices.
- Again, careful construction and use of derived space.
- Again, appropriate validation (result image discussion).

Refinements
- Success with major scalability improvement.
- Interface complexity (structure-based brushing).
Critique

- **par coords**
 - strengths
 - can be useful additional view
 - (rare to use completely standalone)
 - now popular, many follow-on technique refinements
 - weaknesses
 - major learning curve, difficult for novices

- **hier par coords**
 - strengths
 - success with major scalability improvement
 - again, careful construction and use of derived space
 - again, appropriate validation (result image discussion)
 - weaknesses
 - interface complexity (structure-based brushing)
Parallel Sets

- technique-driven (problem char not main concern)
- data abstraction
 - table with categorical (not quant) attributes
 - discrete
 - small number of distinct values
 - ordering between attrs not given
 - cross-tabulation (multi-way frequency/contingency table)
- task abstraction
 - identify hotspots and major trends
 - find relationships between dimensions and correlations between categories
 - **not** outlier detection
Visual Encoding

- like par coords but with boxes scaled by frequency values
- color coded by values for current active dimension

Visual Encoding

- boxes can expand to show histograms

Interaction: Aggregation

Interaction: Filtering

Interaction: Highlighting

Results: Case Study

- corr between family type, city sizes, income, detergent?

Critique

- **Strengths**
 - Handles categorical, frequencies

- **Weaknesses/Limits**
 - Designed for few, not many distinct values
 - Designed for few, not many attributes
Critique

- strengths
 - handles categorical, frequencies

- weaknesses/limits
 - designed for few not many distinct values
 - designed for few not many attributes
Synthesis

- emphasis on derived spaces
 - multiscale scatterplot, hier par coord
- extending scope of data handled
 - hier par coord: handle more data
 - parallel sets: handle different data
- all three designed to show all attribs
 - in contrast to dimensionality reduction
Projects

- programming
 - problem-driven (design studies)
 - technique-driven (new technique idea)
 - implementation (of previously proposed technique)

- analysis

- survey

- team of two people requires scope*2

- new this year: submit source code along with final report

- pre-proposal meetings: deadline in two days
 - many already done (I signed off)
 - still a few to do (deadline in two days)
Project Proposals I

- **title (mandatory)**
- **names/email for people on team**
- **description of problem you’re targeting**
 - prob-driv: domain, task, dataset
 - tech-driv: explain in terms of method taxonomy
- **personal experience with this problem**
- **description of proposed solution**
 - prob-driv:
 - **data and task abstraction**
 - encoding and interaction techniques
 - if refining/improving previous solution, also analyze that in same terms
 - tech-driv:
 - encoding and/or interaction techniques, in detail
Project Proposals II

- scenario of use
 - what user will do/see step by step in performing a task while using system
 - must include illustrations
- proposed implementation approach
 - high-level: platforms/language, toolkits if any
 - big picture of what you code vs what toolkit supports
 - ok to have set of alternatives if not narrowed down yet
- schedule: milestones with target dates
 - be specific not just generic (plan/code/writeup)
 - think agile: get basics working early, then augment
- previous work
 - not as complete as final, but you should have a start
- one per project due Oct 28 5pm as PDF by email
 - subject header: 533 submit proposal
Topic Presentations: Signing Up

- topic list
 www.cs.ubc.ca/ tmm/courses/533-11/presentations.html

- choice can indeed be motivated by your project topic
- sign up by email by Fri 10/21 5pm
 - required: three topic choices
 - optional: one veto day that you do not want
- I will post final topic/date assignments by Mon 10/31
 - might have two people split one topic if it’s popular
- I will post list of papers on topic 10 days in advance
 - you pick 3 papers total, at least 1 must be from my list
Presentations

- you present 3 papers in 25 minutes
 - aim for 20 minutes presentation, 5 minutes questions
- grading criteria
 - content summary: 50%
 - you explain papers to people who have not read them
 - you analyze the work w.r.t design levels and methods
 - synthesis/critique: 20%
 - for both individual papers, and across all three
 - presentation style: 15%
 - materials preparation: 15%
 - slides required

- logistics
 - you may use my laptop or yours
 - if my laptop slides due 11am (PDF or PPT)
 - if my laptop, check in advance for videos/demos
Presentations: Process Advice

- bad idea: make slides; give talk in class
Presentations: Process Advice

- bad idea: make slides; give talk in class

- good idea: start early and refine iteratively
 - make slides
 - practice talk out loud with timer
 - realize it’s too long
 - realize it’s too short
 - realize what you forgot to put on slide
 - realize why order of explanation is backwards
 - realize where you need more pictures/diagrams
 - realize where you haven’t figured out what to say

- refine slides
- loop back up to practice; repeat until great!
tips on practicing
- always time it (whole thing; ideal slide by slide)
- best: give talk to somebody and get feedback
- at least once practice standing like giving real talk

tips on slides
- ensure smallest text readable from back of room
- use color correctly (sufficient luminance contrast)
- early drafts often text-oriented; add pictures as refine

tips on speaking
- talk loud enough that we can hear
- vary your tone of voice
- it gets better; practice makes it less scary

lots more useful tips
- www.cs.ubc.ca/~tmm/courses/533-11/presentations.html#preparation

Reminders

- Project meetings due 10/19
 - this Wednesday
- No class next week (Oct 24/26)