Analysis Via Levels and Methods

- Examples in this and graphs/trees lecture
- Note: only sometimes does this analysis occur in paper itself!
- You need to interpret
- (also something to do in your own project!)

Multiscale Scatterplots

- Blur shows structure at multiple scales
- Convolute with Gaussian
- Slider to control scale parameter interactively
- Easily selectable regions in quantized image

Figure 3: A 2D scatterplot displaying how the strength and application metric interact. Any device having a regular geometrical shape (be it rectangular — as with the sliders, or round — a brush, etc.).

Problem and Abstraction Levels

- Minimal problem context: paper is technique-driven not problem-driven
- Task abstraction: selection and filtering at different scales within scatterplots

Encoding/Interaction Level

- Basic solution: visual encoding technique: scatterplots
 - Mark: points, channels, bars and text position
- Interaction technique: range sliders to filter max/min
- Limitations
 - Interesting areas might not be easy to select as rectangular regions, esp for complex derived attributes

Figure 1: Chiricota, Jourdan, and Melancon. Metric-Based Network Exploration and Multiscale Scatterplot. Proc. InfoVis 2004, p 135-142.

Multiscale Scatterplot Selection Technique

- New encoding: derived space created from original scatterplot image
- Greyscale patches forming complex shapes
- Enclosure of darker patches within lighter patches
- New interaction:
 - Simple: sliders for filter size s and number of levels k
 - Complex: single click to select all items $x \geq k$

Figure 4: Chiricota, Jourdan, and Melancon. Metric-Based Network Exploration and Multiscale Scatterplot. Proc. InfoVis 2004, p 135-142.

Method: Linked Views

- Second linked view: 3D node-link network
- Patch selection in blurred scatterplot view shows corresponding components in network view
- Selection in one view filters what is shown in the other

Figure 8: Chiricota, Jourdan, and Melancon. Metric-Based Network Exploration and Multiscale Scatterplot. Proc. InfoVis 2004, p 135-142.

Results: IMDB

- Original data: IMDB graph
- Metrics: network centrality, node degree
- 3 hubs selected in network view

Figure 7: Chiricota, Jourdan, and Melancon. Metric-Based Network Exploration and Multiscale Scatterplot. Proc. InfoVis 2004, p 135-142.

Results: IMDB 2

- Single click in blurred scatterplot view selects entire clique

Figure 6: Chiricota, Jourdan, and Melancon. Metric-Based Network Exploration and Multiscale Scatterplot. Proc. InfoVis 2004, p 135-142.

Critique

- Strengths
 - Successful construction and use of derived space
 - Appropriate validation
 - Qualitative discussion of result images to show new technique capabilities
 - Synergy between encoding and interaction choices
- Weaknesses
 - Somewhat tricky to follow thread of argument since intro/ framing focuses on network exploration, but fundamental technique contribution more about scatterplot encoding/interaction
Hierarchical Parallel Coordinates

- Technique-driven paper
- No problem characterization
- Scale up parallel coordinates to large datasets
- Limitation: overplotting/occlusion

Parallel Coordinates: Basics

- Scatterplot limitation: vis enc with orthogonal axes
- Only 2 attributes with spatial position channel in plane
- Instead, line up axes in parallel to show many attributes with position channel
- Items shown with line with k segments (not as point)

Par Coord Tasks: Showing Correlation

- Pos corr: straight lines; neg corr: all cross at single point

Par Coord Tasks: Aggregation

- Strong neg corr between two final axis pairs

Hier Par Coords: Abstraction

- Data abstraction
 - Original data: table of numbers
 - Derived data:
 - Hierarchical clustering of items in table
 - Cluster stats: points, mean, min, max, size, depth
 - Cluster density: points/size
 - Cluster proximity: linear ordering from tree traversal
- Task abstraction
 - Finding correlations
 - Finding trends, outliers at multiple scales

HPC: Magnification Interaction

- Dimensional zooming: use all available space
- Method: linked view to show true extent

Critique

- Par coords
 - Strengths
 - Can be useful additional view
 - Can be used completely standalone
 - Now popular, many follow-on technique refinements
 - Weaknesses
 - Major learning curve, difficult for novices
 - Hier par coords
 - Strengths
 - Success with major scalability improvement
 - Again, careful construction and use of derived space
 - Weaknesses
 - Interface complexity (structure-based brushing)

HPC: Encoding Derived Data

- Vis enc: variable-width opacity bands
 - Show whole cluster, not just single item
 - Min/max: spatial position
 - Cluster density: transparency at mean point
 - Interpolate transparency between these

HPC: Interacting With Derived Data

- Vis enc: color based on cluster proximity derived attrib
 - Resolves ambiguity from crossings, clarifies structure

HPC: Encoding Derived Data

- Vis enc: color based on cluster proximity derived attrib
 - Resolves ambiguity from crossings, clarifies structure

Parallel Sets

- Technique-driven (problem char not main concern)
- Data abstraction
 - Table with categorical (not quant) attributes
 - Discrete
 - Small number of distinct values
 - Ordering between attributes not given
 - Cross-tabulation (multi-way frequency/contingency table)
- Task abstraction
 - Identify hotspots and major trends
 - Find relationships between dimensions and correlations between categories
 - Not outlier detection

Visual Encoding

- Like par coords but with boxes scaled by frequency values
- Color coded by values for current active dimension

Interaction: Reordering

- Boxes can expand to show histograms

Interaction: Aggregation

- Shows class distributions
- Crosses: class distribution
- Swarms: class distributions
Presentations: Process Advice

Bad idea: make slides; give talk in class

Good idea: start early and refine iteratively

- make slides
- practice talk out loud with timer
- realize it’s too long
- realize it’s too short
- realize why order of explanation is backwards
- realize where you need more pictures/diagrams
- realize where you haven’t figured out what to say
- refine slides
- loop back up to practice; repeat until great!

Project Proposals I

- **Title (mandatory)**
- **Names/email for people on team**
- **Description of problem you’re targeting**
- **Description of proposed solution**
 - **Problem-driven:** design studies
 - **Technique-driven:** (new technique idea)
- **Analysis**
- **Survey**
- **Pre-proposal meetings:** deadline in two days
- **Many already done (I signed off)**
- **Not as complete as final, but you should have a start**
- **It gets better; practice makes it less scary**
- **Might have two people split one topic if it’s popular**
- **Vary your tone of voice**
- **Talk loud enough that we can hear**
- **Be specific not just generic (plan/code/writeup)**
- **Materials preparation:** 15%
- **Presentation style:** 15%
- **Content summary:** 50%
- **Talking to people who have not read your paper**

Presentations: Process Advice

Tips on practicing

- always time it (whole thing; ideal slide by slide)
- best: give talk to somebody and get feedback
- at least once practice standing like giving real talk
- tips on slides
 - ensure smallest text readable from back of room
 - use color correctly (sufficient luminance contrast)
- tips on speaking
 - talk loud enough that we can hear
 - vary your tone of voice
 - get better; practice makes it less scary
- lots more useful tips

Presentations: Process Advice 2

- tips on practicing
 - always time it (whole thing; ideal slide by slide)
 - best: give talk to somebody and get feedback
 - at least once practice standing like giving real talk
 - tips on slides
 - ensure smallest text readable from back of room
 - use color correctly (sufficient luminance contrast)
 - early drafts often text-oriented; add pictures as refine
 - tips on speaking
 - talk loud enough that we can hear
 - vary your tone of voice
 - it gets better; practice makes it less scary
 - lots more useful tips

Topic Presentations: Signing Up

- **Title:** mandatory
- **Names/email for people on team**
- **Description of problem you’re targeting**
- **Description of proposed solution**
- **Materials preparation:** 15%
- **Presentation style:** 15%
- **Content summary:** 50%
- **Talking to people who have not read your paper**

Presentations: Process Advice

Tips on practicing

- always time it (whole thing; ideal slide by slide)
- best: give talk to somebody and get feedback
- at least once practice standing like giving real talk
- tips on slides
 - ensure smallest text readable from back of room
 - use color correctly (sufficient luminance contrast)
- tips on speaking
 - talk loud enough that we can hear
 - vary your tone of voice
 - it gets better; practice makes it less scary
- lots more useful tips

Reading For Next Time: NOTE CHANGE

Project Proposals II

- **What user will do/see step by step in performing a task while using system**
- **Must include illustrations**
- **Previous work**
 - not as complete as final, but you should have a start
 - one per project due Oct 28 5pm as PDF by email
- **Subject header:** 533 submit proposal

Reading For Next Time: NOTE CHANGE

