
Online Dynamic Graph Drawing. Yaniv Frishman and Ayellet Tal. Proc EuroVis 2007, p 75-82.

Further Readings

Hermann Survey

- true survey, won’t try to summarize here!

- nice abstraction work by authors themselves
 - derived data: skeletonization via Strahler numbers
 - encoding techniques:
 - ghosting = layering
 - hiding = elision
 - grouping = aggregation

Trees: Basic Node-Link Drawings

- task/data abstraction
 - understanding detailed topological structure of tree
- visual encoding: layered node-link view
 - vertical position: distance from root node in hops
 - horizontal position: (as much symmetry as possible)

[http://gravite.labri.fr/?Want_to_work_with_us?:Hiring_puzzles:Tidy_Tree_Layouts]
Trees: Basic Node-Link Drawings

- **algorithm level:**
 - Wetherell and Shannon 1978, Tidy Drawings of Trees
 - Reingold and Tilford 1981, Tidier Drawing of Trees
 - Walker 1990, A Node-positioning Algorithm for General Trees
 - Buchheim et al 2002, Improving Walker’s Algorithm to Run in Linear Time

http://gravite.labri.fr/?Want_to_work_with_us_
Trees: Radial Node-Link Drawings

- data abstraction: data stream, not static file
- encoding technique: radial not rectilinear layout
- interaction technique: animated transitions from old to new layout

[Fig 3, 5. Yee et al. Animated Exploration of Graphs with Radial Layout. Proc InfoVis 2001.]
Trees: Radial Node-Link Drawings

- animation requirements identified:
 - avoid center collapse/clutter by interpolate polar not rectilinear

- maintain neighbor order to stabilize (note prefuse bug!)

[Fig 2. Yee et al. Animated Exploration of Graphs with Radial Layout. Proc InfoVis 2001.]
Trees: Treemaps

- Data abstraction: tree nodes have attributes
- Task abstraction: emphasize node attributes, not topological structure
- Visual encoding: use containment not connection

[Fig 1. van Wijk and van de Wetering. Cushion Treemaps. Proc InfoVis 1999, pp 73-78.]
Cushion Treemaps

- visual encoding: also show nesting/topo structure more clearly with shading cues
- interaction: scale parameter controls global vs. local

Scaling Up Treemaps: MillionVis

- visual encoding: treemaps, scatterplots
 - darkness shows nesting level
- algorithm: many GPU tricks for speed
 - dynamic queries through Z buffering

[Fig 1. Fekete and Plaisant. Interactive Information Visualization of a Million Items. Proc InfoVis 2002, p 117-124.]
Scaling Up Treemaps: MillionVis

- interaction: animated transitions
- visenc requirement: stable layout

[Fig 4a. Fekete and Plaisant. Interactive Information Visualization of a Million Items. Proc InfoVis 2002, p 117-124.]
Scaling Up Treemaps: MillionVis

- scalability requires care at visual encoding level
 - not just algorithm level!
 - to visually distinguish with fewer pixels, use shading not outline

[Fig 2. Fekete and Plaisant. Interactive Information Visualization of a Million Items. Proc InfoVis 2002, p 117-124.]
Graphs: Hierarchical Layout

- visual encoding
 - vertical position: distance from root
 - does not mean using containment

- algorithms
 - Gansner et al 1993, A Technique For Drawing Directed Graphs
 - Eiglsperger et al 2005, An efficient implementation of Sugiyama’s algorithm for layered graph drawing
Graphs: Circular Layout

- visual encoding
 - nodes on circle
 - edge crossings minimized

- algorithms
 - Six and Tollis 1999, A Framework for Circular Drawings of Networks
Graphs: Force-Directed Placement

- visual encoding
 - nondeterministic placement
- algorithm
 - spring forces pull together edges, repulsive forces pull apart nodes
 - optimization framework easy to extend, but tends to be brittle
- algorithms
 - Fruchterman and Reingold, 1991, Graph Drawing By Force-Directed Placement
 - Kamada and Kawai, 1989, An Algorithm For Drawing General Undirected Graphs
Online Dynamic Graph Drawing

- data abstraction: streaming data not static file
- task abstraction: dynamic stability (tradeoff)
 - minimize visual changes
 - stay true to current dataset structure

[Fig 1. Frishman and Tal. Online Dynamic Graph Drawing. Proc EuroVis 2007, p 75-82.]
Online Dynamic GD: Algorithm

- static graph layout algs unstable
 - small changes in input can have large changes in output
 - randomness, no constraints on maintaining geometric proximity

- dynamic online algorithm
 - first step: initialize, layout
 - later steps: merge, pin, layout, animate
 - acceleration: partition before GPU force-directed layout
Online Dynamic GD: Validation

- **algorithm level**
 - complexity analysis
 - benchmarks: running time for CPU and GPU versions

- **visual encoding level**
 - qualitative discussion of result images/video
 - quantitative metrics:
 - pairwise avg node displacement for stability
 - potential energy for quality
 - compare static, full dynamic, dynamic without pinning
Critique

Strengths
- Strong algorithmic contribution
- Previous work not scalable
- Very good validation, matches technique contribution
- Best paper award, EuroVis 2007

Weaknesses
- Using mesh datasets to test graph drawing claims
- Different topological characteristics than typical infovis case

[Fig 3a. Frishman and Tal. Online Dynamic Graph Drawing. Proc EuroVis 2007, p 75-82.]
Critique

- strengths
 - strong algorithmic contribution
 - previous work not scalable
 - very good validation, matches technique contribution
 - best paper award, EuroVis 2007

[Fig 3a. Frishman and Tal. Online Dynamic Graph Drawing. Proc EuroVis 2007, p 75-82.]
Critique

- strengths
 - strong algorithmic contribution
 - previous work not scalable
 - very good validation, matches technique contribution
 - best paper award, EuroVis 2007

- weaknesses
 - using mesh datasets to test graph drawing claims
 - different topological characteristics than typical infovis case

[Fig 3a. Frishman and Tal. Online Dynamic Graph Drawing. Proc EuroVis 2007, p 75-82.]
Multi-level Graphs

- data abstraction: create cluster hierarchy on top of original graph (coarsening)

Multi-level Graphs: GrouseFlocks

- visual encoding: containment
- interaction: expand/contract metanodes to change graph cut

Small-World Networks

- high clustering, small path length
 - vs. random uniform distribution
- examples
 - social networks, movie actors, Web, ...
- multiscale small-world networks
 - exploit these properties for better layout
Small World Coarsening

- remove low-strength edges
- maximal disconnected subgraphs
- quotient graph: subgraph = higher-level node

[Fig 2. Auber et al. Multiscale Visualization of Small World Networks. Proc. InfoVis 2003, p 75-81.]
Small World: Nested Quotient Graphs

- visual encoding
 - containment: subgraph laid out within metanode

[Fig 3. Auber et al. Multiscale Visualization of Small World Networks. Proc. InfoVis 2003, p. 75-81.]
Small World: Nested Quotient Graphs

- pro: very evocative of structure
- con: does not scale past 2-3 levels of depth

[Fig 5. Auber et al. Multiscale Visualization of Small World Networks. Proc. InfoVis 2003, p 75-81.]
Topological Fisheye Views

- data abstraction
 - input is laid-out graph
 - construct multilevel hierarchy by coarsening graphs
- interaction: user controls focus point
- visual encoding: show hybrid view made from cut through several levels

Topological Fisheye Views

Topo Fisheye: Coarsening Strategy

- must preserve graph-theoretic properties
 - topological distance (hops away), cycles
 - cannot just use geometric proximity alone
 - cannot just contract nodes/edges
 - exploit geometric information with proximity graph

Topo Fisheye: Coarsening Requirements

- uniform cluster/metanode size
- match coarse and fine layout geometries
- scalable

find active nodes

Topo Fisheye: Distort For Uniform Density

- visual encoding
 - geometric distortion for uniform density
 - (colorcoded by depth in hierarchy to illustrate algorithm)

Critique

- Strengths:
 - Topologically sophisticated, not just geometric distortion
 - Rigorous approach

- Weaknesses (shared by many approaches):
 - What if mental model does not match coarsening strategy?
 - Again, meshes for evaluating InfoVis claims
Critique

- strengths
 - topologically sophisticated, not just geometric distortion
 - rigorous approach
- weaknesses (shared by many approaches)
 - what if mental model does not match coarsening strategy?
 - again, meshes for evaluating infovis claims
PivotGraph

- task abstraction: show relationship between node attributes and connections in multiattribute graph
- data abstraction: rollup and selection transformations

PivotGraph

- visual encoding: line (1D) or grid (2D), area proportional to attribute
 - grid nodes based on attribute count, not original graph node count!
- scalability through abstraction, not layout algorithms

Node and Link Diagram

PivotGraph Roll-up
PivotGraph

- visual encoding: line for 1D rollup, or grid for 2D case

interaction: changing rollup/selection choices, animated transitions between states

PivotGraph

- in general, more compact than matrix view

Presentation Topics

- see course page for your day/topic
- seed papers coming soon for Wed Nov 9 folks