Evaluation

Jessica Dawson 533C Topic Presentation November 9, 2011

Outline

- Human-centered design for geovis
 - David Lloyd and Jason Dykes. *Human-Centered Approaches in Geovisualization Design: Investigating Multiple Methods Through a Long-Term Case Study*. Proc. InfoVis 2011.
- Evaluation through insight
 - Purvi Saraiya, Chris North, Karen Duca. An Insight-Based Methodology for Evaluating Bioinformatics Visualizations. IEEE Trans. Vis. Comput. Graph. 11(4):443-456 (2005)
- Crowdsourced perception experiments
 - Jeffrey Heer and Michael Bostock. *Crowdsourcing Graphical Perception: Using Mechanical Turk to Assess Visualization Design*. Proc. CHI 2010.

Theme

Proposing and evaluating *methods of evaluation* for the development of infovis applications.

HUMAN-CENTERED APPROACHES IN GEOVISUALIZATION DESIGN: INVESTIGATING MULTIPLE METHODS THROUGH A LONG-TERM CASE STUDY

David Lloyd and Jason Dykes. (Proc. InfoVis 2011).

Overview

- Problem
 - How to apply human-centered (HC) design processes to the early stages of *geovis* design?
- Method + Evaluation
 - In depth, 3-year case study with 3 domain specialists
 - Follow HC design process to design a geovisualization
- Paper summary of the whole process
 - Published details of the study at each stage in separate papers

Case-Study Method

• Use stages in ISO Standard 13407 on human centered-design

- Focusing specifically on early stages (in white)
- Employ multiple HC methods at each stage
 - Assess effectiveness of each method for the goals of the stage

Stage 1: Understanding Context of Use

- Briefly . . .
- Goal
 - Understand "users, tasks and the organizational an physical environment"
- Methods:
 - Field research methods, contextual inquiry
 - Lots of data collection methods
 - interviews, observation, questionnaires, content analysis, card sorting.
- Results
 - Mostly inline with expected results from other domains
 - Specifically interesting for vis: realize need to understand data in context

Stage 2: Establishing Requirements

- Looking for approaches that encourage participatory, collaborative engagement of users
- Methods
 - Standard Volere method
 - structured template of generic questions
 - Alternatives:
 - Lectures and elicitation of ideas through card sorting, interviews, sketching
 - Expert interviews with geovis design experts

Stage 2 Results

- Volere Method: Ineffective
- Lecture: overwhelmed specialists
 - Sketching somewhat effective
 - But difficulty determining priority/suitability of tools
- Expert Interviews
 - Effective, but missing domain knowledge
- Expert Interviews and sketching similar

Stage 3: Early Prototype Designs

- Are wireframe style prototypes useful for geovis design?
- Paper wireframe prototypes
 - Application states as multiples on a single sheet
 - Interactions conveyed verbally
- Method
 - Generated designs from stage 1 and 2 output; fake data
 - Specialists used a think-aloud protocol

Stage 3 Results

- Wireframes successful for communicating design
- Real data important
 - Tradeoff of 'quick' prototyping

	Specialist	Wireframe 1	Wireframe 2	Specialist total
approval	1	3	4	7
	2	3	4	7
	3	1	4	5
idea	1	5	5	10
	2	2	6	8
	3	2	5	7
limitation	1	0	5	5
	2	2	3	5
	3	2	2	4
opinion	1	1	5	6
	2	2	8	10
	3	4	5	9
query	1	0	0	0
	2	6	4	10
	3	4	3	7
	Total	37	63	100

Stage 4: Later Prototype Designs

- Goals:
 - Do prototypes provoke feedback? Do prototypes elicit exploratory behavior?
- Prototypes
 - Paper and digital versions
- Method
 - User testing with intervention
 - Real domain data, simple tasks
 - Counts of suggestions/behaviour recorded

Stage 4: Results

- Exploration Behavior
 - Similar amounts of task driven exploration for both paper and digital
- Feedback and Improvements
 - Paper prototype yielded more suggestions (except interface-related)
- Sketchiness communicated 'suggestive' rather than 'definitive'
- In short: prototyping works
 - the quicker and sketchier the better

Conclusions

- HC design methods can be effectively employed for geovis
 - With vis specific limitations

Critique

- Tried lot of different methods at each stage
 - What works/what doesn't work for vis
- Lots of different data collection methods
 - qualitative analysis when possible
- Prototyping works!
 - Good evaluation of prototyping effectiveness
- 3 years is a long time!

Questions?

AN INSIGHT-BASED METHODOLOGY FOR EVALUATING BIOINFORMATICS VISUALIZATIONS.

Purvi Saraiya, Chris North, Karen Duca. IEEE Trans. Vis. Comput. Graph. 11(4):443-456 (2005)

Overview

- Problem:
 - How to evaluate infovis tools for biologists when tasks are *exploratory* and *open ended*?
- Proposed Solution:
 - Measure *insight* instead of performance
 - But can insight be measured in a controlled experimental setting?
- Evaluation + Method:
 - 1. Development of *Insight-based* methodology
 - 2. Evaluation of popular bioinformatics tools with respect to insight

Characterizing Insight

- Pilot Study
 - Think aloud observation with 5 participants
 - Exploratory, no protocol or task
- Results
 - An insight = an individual observation
 - Recognized as any data observation the user mentions aloud

Characteristics

- The actual observation made
- Time to reach insight
- Domain value of insight
- Generated hypothesis?

- Expected vs. unexpected insight
- Correctness
- Breadth vs. Depth of insight
- Category (overview? pattern groups? details?)

Experiment

- Evaluation of 5 popular bioinformatics tools in terms of *insight*
- Protocol:
 - Mix of controlled experiment and usability testing
 - Think aloud observation
- Design:
 - 3 multi-dimensional microarray data sets, between-subjects
 - 5 microarray visualization tools, between-subjects
 - Clusterview
 - TimeSearcher
 - HCE
 - Spotfire
 - GeneSpring

Microarray Tools

- Broad selection of techniques and capabilities
 - Heatmaps, parallel coordinates, clustering, etc.
 - Some support multiple visualization techniques, some support only one;
- In depth discussion of tools out scope
 - See paper for details

Tool Example: HCE

Purvi Saraiya, Chris North, Karen Duca. *An Insight-Based Methodology for Evaluating Bioinformatics Visualizations*. IEEE Trans. Vis. Comput. Graph. 11(4):443-456 (2005)

Experiment

- Design continued. . . :
 - 30 participants
 - Biology background; mix of experts, novices
 - 2 per dataset, per tool
 - Exploratory task
 - Examining interactions among genes and conditions.
- Analysis
 - Insights identified and coded by experimenters from video

Results

- Lots of results
 - Mainly qualitative

What we won't discuss

- Paper has great details for:
 - General tendencies across dataset and tools with respect to insight
 - The pros/cons of specific tools

What we will discuss

• How effective was the insight-based methodology?

Purvi Saraiya, Chris North, Karen Duca. *An Insight-Based Methodology for Evaluating Bioinformatics Visualizations*. IEEE Trans. Vis. Comput. Graph. 11(4):443-456 (2005)

Effectiveness?

- By using insight characteristics as a measure, the authors came to some strong conclusions
- Also novel high-level observations
 - Domain experts performed on par with novices
 - More breadth insights than depth insights
 - Multiple views affects confidence

Limitations

- Coding of insights labour intensive
- Without tasks, it can be difficult to motivate users
- Domain experts are required for *deep*, *meaningful* insights

Critique

- New method based on insights
 - Applicable to a wide range of vis-domain
 - Not just for summative design
- Experiment was only between subjects
 - What about difference in insight for one user with multiple tools?

Questions?

CROWDSOURCING GRAPHICAL PERCEPTION: USING MECHANICAL TURK TO ASSESS VISUALIZATION DESIGN.

Jeffrey Heer and Michael Bostock. (Proc. CHI 2010)

Overview

- Problem:
 - Are web-based evaluations through Amazon's Mechanical Turk (MTurk) a viable method for graphical perception experiments?

• Evaluations:

- 1. Replicate prior laboratory studies;
- 2. Generate of new graphical perception results
- Provide cost/benefit analysis

Web-Based Evaluations

- Increasing use of web-based platforms to perform experiments and conduct user research
- Benefits
 - Substantial reductions in cost/time to result
 - Ecological validity
- Possible Limitations
 - Vis perspective
 - Lack of control over display configurations, viewing environment, etc

Mechanical Turk (MTurk)

- Popular *micro-task* market
- Requesters post jobs, called HITs (Human Intelligence Tasks)
 - *HITs* come with a small reward, e.g. \$0.01 -\$0.10,
 - a maximum number of assignments that can be performed
- A pool of workers, called *Turkers*, select *HITs* to perform
 - Requesters pay Turkers for completed HITs
- Considerations for experimentation
 - Qualification tasks can be introduced
 - Flexibility through embedding your own web pages

Experiment 1A

- Replication of Cleveland and McGill study
 - W.S. Cleveland and R. McGill. *Graphical Perception: Theory,* experimentation and application to the development of graphical methods. J. Am. Statistical Assoc. 79:531-544 (1984).
- Study ranked visual variables by their effectiveness
 - For each visual encoding, users asked to "identify the smaller of two marked values" and then,
 - "make a quick visual judgement" to estimate what percentage the smaller is of the larger.

Experiment 1A Design

- Design
 - 7 judgment types
 - 10 charts
 - 70 trials (individual *HITs*)
 - Subjects paid \$0.05/judgment
- Judgment task encodings
 - Looked at position and length (original study)
 - Angle and circular encoding (modified to match study format)

Results

- Analysis
 - 50 subjects, 3481 responses
- Replicated data exploration
 Absolute error measure of accuracy
 - $Log_2(ljudged percent true percent + 1/8)$
- Results not identical, but similar
 - Rankings preserved, success!
- Additional Experiment 1B
 - Novel experiment, tasks 8/9 in chart
 - For details see paper

Experiment 2 (Briefly. . .)

- Successful replication of Stone and Bartram study,
 - M. Stone and L. Bartram. *Alpha, contrast, and the perception of visual metadata*. Proc. Color Imaging Conf. 2009.
- Subjects configure transparency (alpha value) across varying backgrounds and densities
- Additional measure of screen configurations was recorded and analyzed
- See paper for details

Experiment 3

- Novel experiment to assess crowdsourcing for experiments looking at chart size variations
- Examined effects of *chart size* and *gridline spacing* on the accuracy of value comparisons in charts

Experiment 3 Design

- 2 chart x 3 height x 4 gridline spacing
- 72 trials (individual HITs)
- Subjects paid \$0.02/HIT
- Task
 - Participants asked to identify the smaller marked element, and then estimate the difference between the two

Results

- Analysis
 - Estimation error
 - ljudged difference true differencel
 - Response time could not be analyzed because of unreliability
- Significant effect of chart size
- and gridlines
 - See paper for details

Performance and Cost

- Cost-saving
 - Total expenditure, \$367.77; a lab experiment would be \$2190
- Time-saving
 - Days instead of weeks to complete experiment

Limitations and Considerations

- Turkers overlap across studies
- HIT Completion rates vary
- Reward level has effects
 - Raising \$ decreases time to results, but Turkers seem to be less accurate
- Lots more in paper
- The good news
 - Turkers provide high-quality results (most of the time)

Overall Results

- MTurk is a viable option for perception experiments
 - Successfully replicated 2 experiments
 - Conducted 2 novel experiments with interesting results
- However, it comes with a lot of limitations
 - May be best used in combination with other evaluation techniques

Critique

- Replication of results and novel experiments convincing
- Gathered data about the process of running an Mturk experiment
 - Able to create guidelines for running studies based off experience

Synthesis

- Emphasis on new methods for evaluation for a variety of infovis domains
 - Geovis, bioinformatics, graphical perception
- Evaluating the effectiveness of the evaluation methods through different methodological approaches
 - Case studies and field work
 - Web-based controlled experiments
- All three tackle evaluations targets a different design stages
 - Pre-pre-design
 - Pre-design to prototyping
 - Summative design

Questions?