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Required Readings

Chapter 8: Attribute Reduction Methods

Glimmer: Multilevel MDS on the GPU. Stephen Ingram, Tamara
Munzner and Marc Olano. IEEE TVCG, 15(2):249-261, Mar/Apr

20009.
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Further Reading

HyperSlice: Visualization of scalar functions of many variables.
Jarke J. van Wijk and Robert van Liere. Proc. IEEE Visualization
1993, p 119-125.

Interactive Hierarchical Dimension Ordering, Spacing and Filtering
for Exploration Of High Dimensional Datasets. Jing Yang, Wei
Peng, Matthew O. Ward and Elke A. Rundensteiner. Proc. InfoVis
2003.

A Data-Driven Reflectance Model. Wojciech Matusik, Hanspeter
Pfister, Matt Brand and Leonard McMillan. Proc. SIGGRAPH
2003
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Data Reduction

m how to reduce amount of stuff to draw?
m crosscuts view composition considerations

B item reduction

m last time
m rows of table

m attribute reduction

m this time
m columns of table

m methods for both

m filtering, aggregation, ordering
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Attribute Reduction Methods

m camera metaphors

m slicing, cutting, projection
m filtering, ordering, aggregation

m for attributes as opposed to items
m dimensionality reduction

m uncovering hidden structure
m estimating true dimensionality
m generating synthetic dimensions
m linear mappings
®m nonlinear mappings
m displaying low-dimensional spaces
m scatterplots, SPLOMS, landscapes
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Slicing/Cutting: Spatial Data

m easy to understand: spatial data, 3D to 2D, axis aligned

[Fig 0. Rieder et al. Interactive Visualization of Multimodal Volume Data for
Neurosurgical Tumor Treatment. Computer Graphics Forum (Proc. EuroVis 2008)
27(3):1055-1062, 2008.
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Slicing: High-Dimensional Functions

m HyperSlice: matrix of orthogonal 2D slices
m each panel is display and control: drag to change slice
m simple 3D example

X1

X2

X3

Xy

[Fig 1, 2. van Wijk and van Liere. HyperSlice: Visualization of scalar functions of

many variables. Proc. |IEEE Visualization 1993]
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Slicing: HyperSlice

m 4D function 320 w;/(1 + |x — pi]?)
m diagonals = standard graph

[Fig 4. van Wijk and van Liere. HyperSlice: Visualization of scalar functions of many
variables. Proc. |IEEE Visualization 1993]
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Slicing: HyperSlice

m satellite orbit eccentricity: x pos, y pos, x vel, grav const

[Fig 4. van Liere and van Wijk. Visualization of Multi-Dimensional Scalar Functions

Using HyperSlice. CWI Quarterly, 7(2), June 1994, 147-158. ]

44



Projections

m orthographic: remove all information about filtered dims
m hypercube: 3D to 2D, 4D to 3D (video)
m perspective: some info about filtered dims remains

[http://en.wikipedia.org/wiki/File:Lat%C3%A9c0%C3%A8re_28.svg,
http://en.wikipedia.org/wiki/File:Railroad-Tracks-Perspective.jpg]
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Attribute Filtering

m filtering, but for attributes rather than items
m unfiltered vs filtered SPLOM
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[Fig 4. Yang et al. Interactive Hierarchical Dimension Ordering, Spacing and Filtering
for Exploration Of High Dimensional Datasets. Proc. InfoVis 2003]
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Attribute Ordering

m ordering, but for attributes rather than items
m Hierarchical Clustering Explorer

PRI = o e T

aLet=3130
Minmum Sy <0195 i of Clsors = 155 et

Bl

& [arss oo Dvrion

| 2

| R rToss o Tabe Vo] Ll g e ) etk O [ Pt S]] G Ol | cmears

[Fig 1. Seo and Shneiderman. A Rank-by-Feature Framework for Unsupervised
Multidimensional Data Exploration Using Low Dimensional Projections. Proc. |IEEE
InfoVis 2004, p 65-72.] 12 /44




Dimensionality vs Attribute Reduction

m vocab use in field not consistent
m dimension/attribute
m attribute reduction: reduce set with filtering
m includes orthographic projection
m dimensionality reduction: create smaller set of new dims

m set size is smaller than original, new dims completely
synthetic

m clarification: includes dimensional aggregation
m includes some projections (but not all)

m vocab: projection/mapping
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Uncovering Hidden Structure

m measurements indirect not direct
m real-world sensor limitations

B measurements made in sprawling space
m documents, images

m DR only suitable if (almost) all information could be
conveyed with fewer dimensions

m how do you know? need to estimate true dimensionality
to check if different than original!
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Estimating True Dimensionality

m error for low-dim projection vs high-dim original
B no single correct answer; many metrics proposed
m cumulative variance that is not accounted for
® strain: match variations in distance (vs actual distance
values)
m stress: difference between interpoint distances in high
and low dimensions

stress(D, A) =

® D: matrix of lowD distances
m A: matrix of hiD distances §;;
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Showing Dimensionality Estimates

m scree plots as simple way: error against # dims

m original dataset: 294 dims
m estimate: almost all variance preserved with < 20 dims

1E

@ Use Log Scale

[Fig 2. Ingram et al. DimStiller: Workows for dimensional analysis and reduction.
Proc. VAST 2010, p 3-10]
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Linear Dimensionality Reduction: PCA

m principal components analysis
m describe location of each point as linear combination of
weights for each axis
m finding axes: first with most variance, second with next
most, ...

[http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png]
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Nonlinear Dimensionality Reduction

® many techniques proposed

m MDS, charting, Isomap, LLE, TSNE,...
m optimization problem

m pro: can handle curved rather than linear structure
m con: lose all ties to original dimensions
m new dimensions cannot be easily related to originals
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DR in Visualization: Tasks

m find/verify new/synthetic dimensions
m are the new dimensions believable?
m ex: data-driven reflectance model
m find/verify clusters

m is there clear cluster structure in the new low-dim space?
m does it match a conjectured clustering (color-coded)?
m ex: glimmer
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Example: DR for CG Reflectance Model

m goal: simulate how light bounces off materials to make
realistic pictures

m computer graphics: BRDF (reflectance)

m idea: measure what light does with real materials

1

[Fig 2. Matusik et al. A Data-Driven Reflectance Model. SIGGRAPH 2003]
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Capturing Material Reflectance

m measurement: interaction of light with real materials

(spheres)

m result: 104 high-res images of material

m each image 4M pixels
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[Fig 5. Matusik et al. A Data-Driven Reflectance Model. SIGGRAPH 2003]
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Goal: Image Synthesis

m step 1: create new renderings with CG objects that look
like captured materials
m CG teapot looks just like real hematite

- S
m step 2: simulate completely new materials

B rusty, greasy, ...

[Fig 6, 1. Matusik et al. A Data-Driven Reflectance Model. SIGGRAPH 2003]
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Need For Low-Dimensional Model

m how to do step 2 simulation of new materials?

m 104 materials * 4M pixels = 400 million dimensions
m model much too hi-dim to be useful

m goal: much more concise model that humans can
understand/use to generate computer graphics images

m allow users to tweak meaningful knobs: how shiny, how
greasy, how metallic, what color...

m dimensionality reduction to the rescue
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Dimensionality Reduction: Linear

m first try: PCA, linear DR technique
m result: error falls off sharply

m good results for step 1 around 45 dims

m step 2 problem: physically impossible intermediate
points when simulating new materials
m specular highlights cannot have holes!

[Fig 7, 9. Matusik et al. A Data-Driven Reflectance Model. SIGGRAPH 2003]
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Dimensionality Reduction: Nonlinear

m second try: charting, nonlinear DR
m better if data embedding is curved not flat
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[Fig 10. Matusik et al. A Data-Driven Reflectance Model. SIGGRAPH 2003]
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Dimensionality Reduction: Nonlinear

m second try: charting, nonlinear DR
m scree plot suggests 10-15 dims
m note that dim estimate depends on technique used!

Charted manifolds of BRDF data

reconstruction error

0 é 16 15
manifold dimensionality
[Fig 11. Matusik et al. A Data-Driven Reflectance Model. SIGGRAPH 2003]
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Finding Semantics for Synthetic Dimensions

m look for meaning in scatterplots
m each synthetic dimension named by people, not by
algorithm
® points represent real-world images (spheres)
B people inspect images corresponding to points to decide
if axis could have a meaningful name
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[Fig 12. Matusik et al. A Data-Driven Reflectance Model. SIGGRAPH 2003]

27 /44



Understanding Synthetic Dimensions

m crosscheck meaning

m arrows show simulated images (teapots) made from
model
m check if those match dimension semantics
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[Fig 12,16. Matusik et al. A Data-Driven Reflectance Model. SIGGRAPH 2003]
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Understanding Synthetic Dimensions

Specularness

m Specular-Metallic
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[Fig 13,16. Matusik et al. A Data-Driven Reflectance Model. SIGGRAPH 2003]
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Understanding Synthetic Dimensions

Diffuseness
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[Fig 14,16. Matusik et al. A Data-Driven Reflectance Model. SIGGRAPH 2003]
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Nonlinear Dimensionality Reduction

m MDS: multidimensional scaling

m confusingly, large family of things all called MDS
m some linear, some nonlinear!

m classical: minimize strain

m early formulation equivalent to PCA (linear)
m spectral methods: approximate eigenvectors

m distance scaling: minimize stress

m nonlinear optimization
m force simulation (mass-spring)
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Spring-Based MDS: Naive

m repeat for all points
m compute spring force to all other points
m difference between high dim, low dim distance
B move to better location using computed forces
m compute distances between all points
m O(n?) iteration, O(n%) algorithm
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Faster Spring Model: Stochastic

m compare distances only with a few points
B maintain small local neighborhood set
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Faster Spring Model: Stochastic

m compare distances only with a few points

B maintain small local neighborhood set
m each time pick some randoms, swap in if closer
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Faster Spring Model: Stochastic

m compare distances only with a few points

B maintain small local neighborhood set
m each time pick some randoms, swap in if closer
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Faster Spring Model: Stochastic

m compare distances only with a few points

B maintain small local neighborhood set
m each time pick some randoms, swap in if closer

m small constant: 6 locals, 3 randoms typical
m O(n) iteration, O(n?) algorithm

36 /44



Glimmer Algorithm

m multilevel to avoid local minima, designed to exploit GPU
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[Fig 1. Ingram, Munzner, and Olano. Glimmer: Multilevel MDS on the GPU. IEEE
TVCG, 15(2):249-261, Mar/Apr 2009.]
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Glimmer vs Stochastic Alone

m GPU version of stochastic as relaxation subsystem
B poor convergence properties if run alone
m only obvious when scalability allows thorough testing

GPU-SF — Glimmer
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[Fig 2,4. Ingram, Munzner, and Olano. Glimmer: Multilevel MDS on the GPU. IEEE
TVCC 15(2)Y-240_.261 Mar/Anr 2000 1
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Normalized Stress (Log Scale)

Stochastic Termination

m how do you know when it's done?
m no absolute threshold, depends on dataset
m interactive click to stop does not work for subsystem
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m sparse normalized stress approximation
® minimal overhead to compute (vs. full stress)
m low pass filter

[Fig 9. Ingram, Munzner, and Olano. Glimmer: Multilevel MDS on the GPU. IEEE
TVCG, 15(2):249-261, Mar/Apr 2009.]
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GPUs

m characteristics

m small set of localized texture accesses

output at predetermined locations

no variable length looping

avoid conditionals: all floating point units execute same
instr at same time

m mapping problems to GPU
m arrays become textures
m inner loops become fragment shader code
m program execution becomes rendering

40 /44



Finding/Verifying Clusters

m sparse document dataset: 28K dims, 28K points

m Glimmer (distance) vs PivotMDS (classical)
m speed improvement so distance as fast as classical
®m major quality difference for sparse datasets

1
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[Fig 8,9. Ingram, Munzner, and Olano. Glimmer: Multilevel MDS on the GPU. IEEE
TVCG, 15(2):249-261, Mar/Apr 2009.]
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Showing DR Data

m scatterplot showing points

m only works if true dimensionality is 2 (... or 3)
m need to drill down to see what points represent

m SPLOM
m safe choice
m landscapes
m avoid! studies show worse than just using points
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Reading For Next Time

Hierarchical Parallel Coordinates for Exploration of Large Datasets
Ying-Huey Fua, Matthew O. Ward, and Elke A. Rundensteiner,
IEEE Visualization '99.

Parallel sets: visual analysis of categorical data. Fabien Bendix,
Robert Kosara, and Helwig Hauser. Proc. InfoVis 2005, p 133-140.

Metric-Based Network Exploration and Multiscale Scatterplot.

Yves Chiricota, Fabien Jourdan, Guy Melancon. Proc. InfoVis 04,
pages 135-142.
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Reminders

m Project meetings due 10/19
m one week from today
m Office hours today after class (5-6)
m or schedule specific meeting time by email

m No class Oct 24/26
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