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Required Readings

Chapter 8: Attribute Reduction Methods

Glimmer: Multilevel MDS on the GPU. Stephen Ingram, Tamara
Munzner and Marc Olano. IEEE TVCG, 15(2):249-261, Mar/Apr
2009.
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Further Reading

HyperSlice: Visualization of scalar functions of many variables.
Jarke J. van Wijk and Robert van Liere. Proc. IEEE Visualization
1993, p 119-125.

Interactive Hierarchical Dimension Ordering, Spacing and Filtering
for Exploration Of High Dimensional Datasets. Jing Yang, Wei
Peng, Matthew O. Ward and Elke A. Rundensteiner. Proc. InfoVis
2003.

A Data-Driven Reflectance Model. Wojciech Matusik, Hanspeter
Pfister, Matt Brand and Leonard McMillan. Proc. SIGGRAPH
2003

3 / 44



Data Reduction

how to reduce amount of stuff to draw?

crosscuts view composition considerations

item reduction

last time
rows of table

attribute reduction

this time
columns of table

methods for both

filtering, aggregation, ordering
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Attribute Reduction Methods

camera metaphors

slicing, cutting, projection

filtering, ordering, aggregation

for attributes as opposed to items

dimensionality reduction

uncovering hidden structure
estimating true dimensionality
generating synthetic dimensions

linear mappings
nonlinear mappings

displaying low-dimensional spaces

scatterplots, SPLOMS, landscapes
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Slicing/Cutting: Spatial Data

easy to understand: spatial data, 3D to 2D, axis aligned

[Fig 0. Rieder et al. Interactive Visualization of Multimodal Volume Data for
Neurosurgical Tumor Treatment. Computer Graphics Forum (Proc. EuroVis 2008)
27(3):1055–1062, 2008.
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Slicing: High-Dimensional Functions

HyperSlice: matrix of orthogonal 2D slices

each panel is display and control: drag to change slice
simple 3D example

x1 x2 x3 x4 x5

x1

x2

x3

x4

x5

Figure 2: Effect of dragging a slice

the values along a horizontal line through the center

of the panel are the same for all panels in the same

column, and also the values along a vertical line are

the same for all panels in the same row (see fig. 1).

This HyperSlice representation allows the viewer to ob-

serve the sensitivity of to changes in one and two di-

mensions. It is difficult, if not impossible, to reconstruct a

complete, multi-dimensional mental image from the sepa-

rate graphical representations. However, this representa-

tion does enable the user to view the multi-dimensional

space around a point in a simple and intuitive way. The

user can locate features such as extrema and hyperplanes.

Because all dimensions are presented simultaneously and

in various combinations, the chance that important rela-

tions are overlooked is small. Another interesting property

is that for the HyperSlice reduces to the standard

representation: a single graph.

The main strength of the HyperSlice representation is

that it lends itself very well to interaction via direct manip-

ulation, which is the subject of the next section.

3 Interaction

3.1 Navigation

The HyperSlice representation shows only around the

current point c. Probably the most important aspect of user

interaction is therefore the change of c. By changing c the

user steers through multi-dimensional space in search for

interesting features of the function, where the visual rep-

resentation supports his navigation. A direct and simple

solution is feasible with the HyperSlice concept. The user

can point at a panel, press a mouse-button, and drag the

visual representation. If the user drags a slice over a

displacement , then the current point is changed

as follows:

,

.

The visual effect is shown in figure 2. Here the slice

is dragged. Slices in the same column move horizontally

over a displacement , whereas the slices in the same row

move vertically over a displacement . Furthermore, for

all slices other than , one or two of the modified

dimensions of the current point are not represented by a

horizontal or vertical axis. One could say that these dimen-

sions are perpendicular to these slices. A change in such

a dimension does affect the slice shown: the slices move

perpendicular to the image plane.

If the graph is dragged, the single variable is

changed. The effect is similar to that as described for

slices. Thus, each panel serves not only as a visual rep-

resentation, but also as one- or two-dimensional sliders for

the current value of variables .

In practice this mechanism is used in various ways:

If in one of the panels an interesting spot is detected

(e.g. an optimum) the user can drag this spot to the

center of the panel;

[Fig 1, 2. van Wijk and van Liere. HyperSlice: Visualization of scalar functions of
many variables. Proc. IEEE Visualization 1993]
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Slicing: HyperSlice

4D function
∑3

i=0 wi/(1 + |x − pi |2)

diagonals = standard graph

[Fig 4. van Wijk and van Liere. HyperSlice: Visualization of scalar functions of many
variables. Proc. IEEE Visualization 1993]
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Slicing: HyperSlice

satellite orbit eccentricity: x pos, y pos, x vel, grav const

[Fig 4. van Liere and van Wijk. Visualization of Multi-Dimensional Scalar Functions

Using HyperSlice. CWI Quarterly, 7(2), June 1994, 147-158. ]
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Projections

orthographic: remove all information about filtered dims
hypercube: 3D to 2D, 4D to 3D (video)

perspective: some info about filtered dims remains

[http://en.wikipedia.org/wiki/File:Lat%C3%A9co%C3%A8re 28.svg,

http://en.wikipedia.org/wiki/File:Railroad-Tracks-Perspective.jpg]
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Attribute Filtering

filtering, but for attributes rather than items

unfiltered vs filtered SPLOM

[Fig 4. Yang et al. Interactive Hierarchical Dimension Ordering, Spacing and Filtering
for Exploration Of High Dimensional Datasets. Proc. InfoVis 2003]
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Attribute Ordering

ordering, but for attributes rather than items
Hierarchical Clustering Explorer

[Fig 1. Seo and Shneiderman. A Rank-by-Feature Framework for Unsupervised
Multidimensional Data Exploration Using Low Dimensional Projections. Proc. IEEE
InfoVis 2004, p 65-72.] 12 / 44



Dimensionality vs Attribute Reduction

vocab use in field not consistent

dimension/attribute

attribute reduction: reduce set with filtering

includes orthographic projection

dimensionality reduction: create smaller set of new dims

set size is smaller than original, new dims completely
synthetic
clarification: includes dimensional aggregation
includes some projections (but not all)

vocab: projection/mapping
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Uncovering Hidden Structure

measurements indirect not direct

real-world sensor limitations

measurements made in sprawling space

documents, images

DR only suitable if (almost) all information could be
conveyed with fewer dimensions

how do you know? need to estimate true dimensionality
to check if different than original!
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Estimating True Dimensionality

error for low-dim projection vs high-dim original

no single correct answer; many metrics proposed

cumulative variance that is not accounted for
strain: match variations in distance (vs actual distance
values)
stress: difference between interpoint distances in high
and low dimensions

stress(D,∆) =

√P
ij(dij−δij)

2P
ij δ2

ij

D: matrix of lowD distances
∆: matrix of hiD distances δij
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Showing Dimensionality Estimates

scree plots as simple way: error against # dims

original dataset: 294 dims
estimate: almost all variance preserved with < 20 dims

[Fig 2. Ingram et al. DimStiller: Workows for dimensional analysis and reduction.
Proc. VAST 2010, p 3-10]
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Linear Dimensionality Reduction: PCA

principal components analysis

describe location of each point as linear combination of
weights for each axis
finding axes: first with most variance, second with next
most, ...

[http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png]
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Nonlinear Dimensionality Reduction

many techniques proposed

MDS, charting, Isomap, LLE, TSNE,...
optimization problem

pro: can handle curved rather than linear structure

con: lose all ties to original dimensions

new dimensions cannot be easily related to originals
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DR in Visualization: Tasks

find/verify new/synthetic dimensions

are the new dimensions believable?
ex: data-driven reflectance model

find/verify clusters

is there clear cluster structure in the new low-dim space?
does it match a conjectured clustering (color-coded)?
ex: glimmer
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Example: DR for CG Reflectance Model

goal: simulate how light bounces off materials to make
realistic pictures

computer graphics: BRDF (reflectance)

idea: measure what light does with real materials

[Fig 2. Matusik et al. A Data-Driven Reflectance Model. SIGGRAPH 2003]
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Capturing Material Reflectance

measurement: interaction of light with real materials
(spheres)

result: 104 high-res images of material

each image 4M pixels

[Fig 5. Matusik et al. A Data-Driven Reflectance Model. SIGGRAPH 2003]
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Goal: Image Synthesis

step 1: create new renderings with CG objects that look
like captured materials

CG teapot looks just like real hematite

step 2: simulate completely new materials
rusty, greasy, ...

[Fig 6, 1. Matusik et al. A Data-Driven Reflectance Model. SIGGRAPH 2003]
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Need For Low-Dimensional Model

how to do step 2 simulation of new materials?

104 materials * 4M pixels = 400 million dimensions
model much too hi-dim to be useful

goal: much more concise model that humans can
understand/use to generate computer graphics images

allow users to tweak meaningful knobs: how shiny, how
greasy, how metallic, what color...

dimensionality reduction to the rescue
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Dimensionality Reduction: Linear

first try: PCA, linear DR technique

result: error falls off sharply

good results for step 1 around 45 dims

step 2 problem: physically impossible intermediate
points when simulating new materials
specular highlights cannot have holes!

[Fig 7, 9. Matusik et al. A Data-Driven Reflectance Model. SIGGRAPH 2003]
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Dimensionality Reduction: Nonlinear

second try: charting, nonlinear DR
better if data embedding is curved not flat

[Fig 10. Matusik et al. A Data-Driven Reflectance Model. SIGGRAPH 2003]
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Dimensionality Reduction: Nonlinear

second try: charting, nonlinear DR
scree plot suggests 10-15 dims
note that dim estimate depends on technique used!

[Fig 11. Matusik et al. A Data-Driven Reflectance Model. SIGGRAPH 2003]
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Finding Semantics for Synthetic Dimensions

look for meaning in scatterplots

each synthetic dimension named by people, not by
algorithm
points represent real-world images (spheres)
people inspect images corresponding to points to decide
if axis could have a meaningful name

[Fig 12. Matusik et al. A Data-Driven Reflectance Model. SIGGRAPH 2003]
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Understanding Synthetic Dimensions

crosscheck meaning

arrows show simulated images (teapots) made from
model
check if those match dimension semantics

[Fig 12,16. Matusik et al. A Data-Driven Reflectance Model. SIGGRAPH 2003]
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Understanding Synthetic Dimensions

Specular-Metallic

[Fig 13,16. Matusik et al. A Data-Driven Reflectance Model. SIGGRAPH 2003]
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Understanding Synthetic Dimensions

Diffuseness-Glossiness

[Fig 14,16. Matusik et al. A Data-Driven Reflectance Model. SIGGRAPH 2003]
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Nonlinear Dimensionality Reduction

MDS: multidimensional scaling

confusingly, large family of things all called MDS

some linear, some nonlinear!

classical: minimize strain

early formulation equivalent to PCA (linear)
spectral methods: approximate eigenvectors

distance scaling: minimize stress

nonlinear optimization
force simulation (mass-spring)
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Spring-Based MDS: Naive

repeat for all points

compute spring force to all other points
difference between high dim, low dim distance
move to better location using computed forces

compute distances between all points

O(n2) iteration, O(n3) algorithm
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Faster Spring Model: Stochastic

compare distances only with a few points

maintain small local neighborhood set
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Faster Spring Model: Stochastic

compare distances only with a few points

maintain small local neighborhood set
each time pick some randoms, swap in if closer
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Faster Spring Model: Stochastic

compare distances only with a few points

maintain small local neighborhood set
each time pick some randoms, swap in if closer
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Faster Spring Model: Stochastic

compare distances only with a few points

maintain small local neighborhood set
each time pick some randoms, swap in if closer

small constant: 6 locals, 3 randoms typical

O(n) iteration, O(n2) algorithm
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Glimmer Algorithm

multilevel to avoid local minima, designed to exploit GPU

Restrict

Interpolate

Relax

restriction to decimate

relaxation as core computation

relaxation to interpolate up to next level

Reuse
GPU-SF

Restrict
Relax

Relax

Interpolate

[Fig 1. Ingram, Munzner, and Olano. Glimmer: Multilevel MDS on the GPU. IEEE
TVCG, 15(2):249-261, Mar/Apr 2009.]
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Glimmer vs Stochastic Alone

GPU version of stochastic as relaxation subsystem
poor convergence properties if run alone
only obvious when scalability allows thorough testing
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[Fig 2,4. Ingram, Munzner, and Olano. Glimmer: Multilevel MDS on the GPU. IEEE
TVCG, 15(2):249-261, Mar/Apr 2009.]
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Stochastic Termination

how do you know when it’s done?
no absolute threshold, depends on dataset
interactive click to stop does not work for subsystem
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sparse normalized stress approximation
minimal overhead to compute (vs. full stress)
low pass filter

[Fig 9. Ingram, Munzner, and Olano. Glimmer: Multilevel MDS on the GPU. IEEE
TVCG, 15(2):249-261, Mar/Apr 2009.]
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GPUs

characteristics

small set of localized texture accesses
output at predetermined locations
no variable length looping
avoid conditionals: all floating point units execute same
instr at same time

mapping problems to GPU

arrays become textures
inner loops become fragment shader code
program execution becomes rendering
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Finding/Verifying Clusters

sparse document dataset: 28K dims, 28K points

Glimmer (distance) vs PivotMDS (classical)

speed improvement so distance as fast as classical
major quality difference for sparse datasets
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[Fig 8,9. Ingram, Munzner, and Olano. Glimmer: Multilevel MDS on the GPU. IEEE
TVCG, 15(2):249-261, Mar/Apr 2009.]
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Showing DR Data

scatterplot showing points

only works if true dimensionality is 2 (... or 3)
need to drill down to see what points represent

SPLOM

safe choice

landscapes

avoid! studies show worse than just using points
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Reading For Next Time

Hierarchical Parallel Coordinates for Exploration of Large Datasets
Ying-Huey Fua, Matthew O. Ward, and Elke A. Rundensteiner,
IEEE Visualization ’99.

Parallel sets: visual analysis of categorical data. Fabien Bendix,
Robert Kosara, and Helwig Hauser. Proc. InfoVis 2005, p 133-140.

Metric-Based Network Exploration and Multiscale Scatterplot.
Yves Chiricota, Fabien Jourdan, Guy Melancon. Proc. InfoVis 04,
pages 135-142.
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Reminders

Project meetings due 10/19

one week from today

Office hours today after class (5-6)

or schedule specific meeting time by email

No class Oct 24/26
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