Lecture 9: Item Reduction Methods

Information Visualization

CPSC 533C, Fall 2011

Tamara Munzner

UBC Computer Science

Wed, 5 October 2011
Chapter 7: Item Reduction Methods

Further Reading

Space-Scale Diagrams: Understanding Multiscale Interfaces George Furnas and Ben Bederson, Proc SIGCHI 95.

Data Reduction

- how to reduce amount of stuff to draw?
 - crosscuts view composition considerations

- item reduction
 - this time
 - rows of table

- attribute reduction
 - next time
 - columns of table
Item Reduction Methods

- filtering and navigation
 - leave some things out
- aggregation
 - merge things together
- overviews
 - temporal through nav
 - separate dedicated view
 - focus + context
 - selective filtering
 - geometric distortion
 - distortion costs/benefits
Filtering and Navigation

- **filter**: choose which items to show/hide
 - **widgets**: sliders, buttons, lists

- **navigation**: filter based on viewpoint
 - **unconstrained / constrained nav**
 - constrained: anim trans to new viewpoint
 - **geometric / semantic zoom**

- **straightforward / nonliteral**
Space-Scale Diagrams

- reasoning about navigation and trajectories

Figure 1. The basic construction of a Space-Scale diagram from a 2D picture.

[Space-Scale Diagrams: Understanding Multiscale Interfaces. George Furnas and Ben Bederson, Proc SIGCHI '95.]
Viewing Window

[Space-Scale Diagrams: Understanding Multiscale Interfaces. George Furnas and Ben Bederson, Proc SIGCHI ’95.]
[Space-Scale Diagrams: Understanding Multiscale Interfaces. George Furnas and Ben Bederson, Proc SIGCHI '95.]
Pan-Zoom Trajectories

[Space-Scale Diagrams: Understanding Multiscale Interfaces. George Furnas and Ben Bederson, Proc SIGCHI '95.]
Shortest Path

[Space-Scale Diagrams: Understanding Multiscale Interfaces. George Furnas and Ben Bederson, Proc SIGCHI '95.]
[Space-Scale Diagrams: Understanding Multiscale Interfaces. George Furnas and Ben Bederson, Proc SIGCHI '95.]
Smooth and Efficient Zooming

- uw space: \(u = \text{pan}, \ w = \text{zoom} \)
 - horiz axis: cross-section through objects
 - point = camera at height \(w \) above object
 - path = camera path

Optimal Paths Through Space

- at each step, cross same number of ellipses
- cross minimal number of ellipses total

[Space-Scale Diagrams: Understanding Multiscale Interfaces. George Furnas and Ben Bederson, Proc SIGCHI '95.]
Pad++

- "infinitely" zoomable user interface (ZUI)

Space-Scale Diagrams: Understanding Multiscale Interfaces
George Furnas and Ben Bederson, Proc SIGCHI '95.
OrthoZoom: Multiscale Navigation

- scale/zoom ratio target
 - index of difficulty: \(\text{ID} = \log(1 + D/W) \)
 - \(D = \) target distance, \(W = \) target size

- control area larger than graphical representation
 - zoom factor is orthogonal cursor-slider distance

OrthoZoom

- multi-scale table of contents [video]

Aggregation

- combine items (vs. eliminate them with filtering)
- derived attributes: min/max/avg/sum (SQL)
- challenge: avoid averaging out signal
Overviews

- strategies: both filter and aggregate
 - simple: geometric zoomout
 - complex: aggregation
- methods
 - temporal through nav
 - separate dedicated view
 - embedded/integrated focus+context
Survey

- taxonomy
 - overview+detail: spatial separation
 - zooming: temporal separation
 - focus+context: integrated/embedded
 - cue-based: selectively highlight/suppress
 - crosscutting
 - differs from book taxonomy

- structure
 - describe technique
 - empirical study results
 - low-level task: target acquisition
 - high-level task: explore search space

Overview+Detail Issues

- linked navigation
 - shortcut navigation, thumbnail to detail
 - explore overview without changing detail
 - if fully synchronized could not explore
 - detail changes immediately shown in overview
- their defn: lens as O+D
 - since O and D separated in z/depth
 - nonstandard usage; I consider F+C

Zooming

- geometric zooming
 - hard to make intuitive zoomout control
- semantic zooming
 - different representations at different scales
 - zoomable user interfaces (ZUIs)
- space-scale diagrams
- challenge: stability
Focus+Context

- integrate focus and context in single view

Focus + Context

- selective filtering
- geometric distortion
- distortion: costs/benefits
F+C Formalism: Degree of Interest

- DOI: \(I(x) - D(x,y) \)
 - \(I \): (a priori) interest
 - \(D \): distance, semantic or spatial
 - \(x \): data element
 - \(y \): current focus

- DOI for selective presentation vs. for distortion
- infer DOI through interaction vs. explicit selection
- single vs. multiple foci

F+C Elision: SpaceTree

- focus+context tree (like DOI Trees Revisited)
 - selective filtering w/ elision

- semantic zooming / aggregation
 - demo
F+C Distortion: 3D Perspective

- move part of surface closer to eye
- Perspective Wall

Space-Scale Diagrams: Understanding Multiscale Interfaces
George Furnas and Ben Bederson, Proc SIGCHI '95.
2D Hyperbolic Trees

- fisheye effect from hyperbolic geometry
- video: open-video.org/details.php?videoid=4567

Distortion Challenges

- unsuitable if must make relative spatial judgements (length)
 - graph topology as least problematic case
- overhead of tracking distortion
 - constrained and predictable maybe safest
- how to visually communicate distortion
 - gridlines, shading
- target acquisition problem
 - lens displacing items away from screen location
- mixed results comparing to separate views, temporal nav
- fisheye followup: concern with enthusiasm over distortion
 - *what* is being shown: selective filtering
 - *how* it is shown: distortion as one possibility
F+C Without Distortion

- specialized hardware

Chapter 8: Attribute Reduction Methods

Reminders

- Project meetings due 10/19
 - two weeks from today
- Office hours today after class (5-6)
 - or schedule specific meeting time by email