Chapter 6: Multiple View Methods

Further Reading

Multiple View Methods

- linking/coordination choices
 - linked highlighting
 - is contiguous in one view distributed in another?
 - linked navigation

- view choices
 - encoding: same or multiform
 - dataset: same or small multiple
 - data: all or subset (overview/detail)
 - spatial ordering of views

- many combinations possible
Small Multiples vs Animation

CMV Example: Visual Search Engine

[VSE from Boukhelfia, Roberts, and Rodgers, Figure 3 of State of the Art: Coordinated & Multiple Views in Exploratory Visualization. Roberts, Proc. CMV 2007]
CMV Example: cdv

[cdv from Dykes, Figure 2 of State of the Art: Coordinated & Multiple Views in Exploratory Visualization. Roberts, Proc. CMV 2007]
CMV Example: CommonGIS

[CommonGIS from Andrienko and Andrienko, Figure 4 of State of the Art: Coordinated & Multiple Views in Exploratory Visualization. Roberts, Proc. CMV 2007]
Replace, Replicate, Overlay

- when to do which
- design tradeoffs
 - always replace: too much reliance on memory
 - always replicate: too many windows
 - always overlay: too much clutter in single window
Architectural Issues

- must play nicely with other views
 - rendering, preprocessing, responding to commands
- most issues also true for scalability of single view
 - guaranteed response time independent of dataset size
- loose confederation
 - multithreaded, each component can work in background
- tighter confederation: return control to master regularly (TJ,H3)
 - divide work into pieces, enqueue
 - continue serving queue when control is returned
Improvise

- tightly integrated coordination approach
 - components with many external control capabilities

- live properties
 - value slots, ports
 - change in response to user action
 - naive approaches fall into cycles

[Fig 1. Weaver. Building Highly-Coordinated Visualizations In Improvise. Proc. InfoVis 2004, p. 159-166]
Coordinating Axes

- scatterplot from components

[Fig 5. Weaver. Building Highly-Coordinated Visualizations In Improvise. Proc. InfoVis 2004, p. 159-166]
Coordinating Multiple Scatterplots

- sync horizontal but not vertical scrolling

[Fig 6. Weaver. Building Highly-Coordinated Visualizations In Improvise. Proc. InfoVis 2004, p. 159-166]
Example: Complex Application

[Fig 4. Weaver. Building Highly-Coordinated Visualizations In Improvise. Proc. InfoVis 2004, p. 159-166]
Video

- building up coordination
 - encoding: same or multiform
 - dataset: same or small multiple
 - data: all or subset (overview/detail)
- background updating of views (upper left dot)
- list views for search coupled with other multiform views
- coordination analysis (controls/variables)
- selection decoupled from data

Critique

- **strengths**
 - sophisticated and powerful approach to coordination

- **weaknesses**
 - large learning curve to build new apps

[Fig 2. Weaver. Building Highly-Coordinated Visualizations In Improvise. Proc. InfoVis 2004, p. 159-166]
Multiform Matrices and Small Multiples

- univariate exploration: small multiples
- bivariate exploration: matrices (SPLOM and other)
- encoding: same or multiform
- dataset: same or small multiple

- techniques
 - juxtaposition
 - sorting/ordering
 - manipulation
 - linking multiple bivariate views

Multiform Bivariate Small Multiple

- common variable: per capita income
- per-column variables: type of cancer mortality
- per-row forms: scatterplot, choropleth/thematic map
- left bright green: high income, low cervical cancer
 - hypoth: not screened
- right dark green: low income, high breast cancer
 - hypoth: late childbearing

Multiform Bivariate Matrix

- scatterplots/maps, histograms along diagonal
 - per-col vars: mortality, early detection, recent screening
- univariate map var: screening facility availability

Spacefill Form

- linked highlight of low doctor ratio counties from scatterplot
- spacefill shows it’s roughly half the items

Sorting/Ordering and Linking

- sorting/ordering
 - manual: direct manipulation from user
 - automatic: conditional entropy metric
 - automatic: hierarchical clustering to find interesting

- linking
 - highlighting
 - many others
 - background color, subspace, conditioning, ...
 - conditioning: filter in/out of given range on another var

- video
 - InfoVis 2003 DVD
Automatic Dotplot Ordering: Trellis

alphabetical site, variety

use group median

Trellis Structure

- Conditioning/trellising: choose structure
 - pick how to subdivide into panels
 - pick x/y axes for indiv panels
 - explore space with different choices
 - multiple conditioning

- Ordering
 - large-scale: between panels
 - small-scale: within panels

- Main-effects: sort by group median
 - derived space, from categorical to ordered
Confirming Hypothesis

- dataset error with Morris switched?
- old trellis: yield against variety given year/site
- new trellis: yield against site and year given variety
 - exploration suggested by previous main-effects ordering

Partial Residuals

- fixed dataset, Morris data switched
- explicitly show differences
 - take means into account
 - line is 10% trimmed mean (toss outliers)

Critique

careful attention to statistics and perception
finding signals in noisy data
trends, outliers
exploratory data analysis (EDA)
Tukey work fundamental, Cleveland continues
Critique

- careful attention to statistics and perception
- finding signals in noisy data
 - trends, outliers

- exploratory data analysis (EDA)
 - Tukey work fundamental, Cleveland continues
HiVE: Conditioning

- reconfigure conditioning hierarchies to explore data space
- treemaps as spacefilling rectangular layouts
 - each rectangle is conditioned subset of data
 - nested graphical summaries
 - size, shape, color used to show subset properties
 - ordered by conditioning variable
- dimensional stacking:
 - discretization and recursive embedding of dimensions

HiVE Example: London Property

- top split: house type. next: neighborhood. next: time
- color: price variance. size: number of sales
- resulting patterns:
 - between neighborhood have different house distributions
 - within neighborhoods have similar prices

HiVE Example: London Property

- color: average price. size: fixed.
- resulting pattern: expensive neighborhoods near center

[Fig 2c. Slingsby, Dykes, and Wood. Configuring Hierarchical Layouts to Address Research Questions. IEEE TVCG 15(6), Nov-Dec 2009 (Proc. InfoVis 2009).]
Critique

- very thoughtful analysis
- prescriptive guidelines
- references backing up arguments
Chapter 7: Item Reduction Methods