Chapter 3: Visual Encoding Principles
(this time: first 25 pages, Sec 3.1-3.4)
(next time: last 11 pages, Sec 3.5)

Further Reading

Further Reading

Stone. Color In Information Display. IEEE Visualization 2006
Course Notes. http://www.stonesc.com/Vis06

Tufte, Envisioning Information. Chapter 5: Color and Information

Ware, Information Visualization: Perception for Design:
Ch 3: Lightness, Brightness, Contrast, and Constancy
Ch 4: Color
Ch 5: Visual Attention and Information That Pops Out
Ch 6: Static and Moving Patterns
Ch 8: Space Perception and the Display of Data in Space
Relative vs Absolute Perception: Length

- Weber’s Law: relative judgements
 - ratio of increment threshold to background intensity is constant
 \[
 \frac{\Delta I}{I} = K
 \]
 - filled rectangles vs white rectangles

\[\text{unframed unaligned}\]
\[\text{framed unaligned}\]
\[\text{unframed aligned}\]
Relative vs Absolute Perception: Lightness

Relative vs Absolute Perception: Color

[Purves. http://www.purveslab.net/seeforyourself/]
Relative vs Absolute Perception: Color

[Purves. http://www.purveslab.net/seeforyourself/]
Image Theory

- marks: geometric primitives
 - points
 - lines
 - areas

- visual channels: control appearance of marks
 - position
 - horizontal
 - vertical
 - both
 - color
 - tilt
 - size
 - shape
Visual Encoding

- analyze as combination of marks and channels showing abstract data dimensions

1: vertical position
2: vertical position, horizontal position
3: vertical position, horizontal position, color
4: vertical position, horizontal position, color, size

mark: line mark: point mark: point mark: point
Visual Channel Types and Rankings

what / where

How much
Visual Channel Types and Rankings

what/where
- planar position
- color hue
- shape
- stipple pattern

how much
Visual Channel Types and Rankings

What/Where
- Planar position
- Color hue
- Shape
- Stipple pattern

How much
- Position on common scale
- Position on unaligned scale
- Length (2D size)
- Tilt, angle
- Area (2D size)
- Curvature
- Volume (3D size)
- Lightness (black/white)
- Color saturation
- Stipple density
Visual Channel Types and Rankings

Categorical
what/where

- planar position
- color hue
- shape
- stipple pattern

How much

- position on common scale
- position on unaligned scale
- length (1D size)
- tilt, angle
- area (2D size)
- curvature
- volume (3D size)
- lightness black/white
- color saturation
- stipple density
Visual Channel Types and Rankings

Categorical
- what/where
 - planar position
 - color hue
 - shape (△, □, ○, △, □)
 - stipple pattern (□, □, □)

Ordered: Ordinal/Quantitative
- how much
 - position on common scale
 - position on unaligned scale
 - length (2D size)
 - tilt, angle
 - area (2D size)
 - curvature
 - volume (3D size)
 - lightness (black/white)
 - color saturation
 - stipple density (□, □, □, □)
Visual Channel Types and Rankings

Categorical

what/where

- planar position
- color hue
- shape
- stipple pattern

Ordered: Ordinal/Quantitative

how much

- position on common scale
- position on unaligned scale
- length (1D size)
- tilt, angle
- area (2D size)
- curvature
- volume (3D size)
- lightness (black/white)
- color saturation
- stipple density

Grouping

- containment (2D)
- connection (1D)
- similarity (other channels)
- proximity (position)
Visual Channel Types and Rankings

Categorical
- What/where
 - planar position
 - color hue
 - shape
 - stipple pattern

Relational, Same Category Grouping
- Containment (2D)
- Connection (1D)
- Similarity (other channels)
- Proximity (position)

Ordered: Ordinal/Quantitative
- How much
 - position on common scale
 - position on unaligned scale
 - length (1D size)
 - tilt, angle
 - area (2D size)
 - curvature
 - volume (3D size)
 - lightness black/white
 - color saturation
 - stipple density
Only Planar Position Works For All!

Categorical
what/where
- planar position
- color hue
- shape
- stipple pattern

Relation, Same Category
Grouping
- containment (2D)
- connection (1D)
- similarity (other channels)
- proximity (position)

Ordered: Ordinal/Quantitative
how much
- position on common scale
- position on unaligned scale
- length (2D size)
- tilt, angle
- area (2D size)
- curvature
- volume (3D size)
- lightness black/white
- color saturation stipple density
Ranking Differs For All Other Channels

Categorical
what/where
- planar position
- color hue
- shape
- stipple pattern

Ordered: Ordinal/Quantitative
how much
- position on common scale
- position on unaligned scale
- length (1D size)
- tilt, angle
- area (2D size)
- curvature
- volume (3D size)
- lightness (black/white)
- color saturation
- stipple density

Relationship, Same Category
Grouping
- Containment (2D)
- Connection (1D)
- Similarity (other channels)
- Proximity (position)
Grouping Channels

- a) proximity
- b) similarity (color)
- c) connection
- d) containment
Expressiveness and Effectiveness

- expressiveness principle
 - pick visual channel to express all of and only information in dataset

- effectiveness principle
 - ranking of channel should match importance of attribute

- what criteria determine channel ranks?
 - accuracy, discriminability, separability, popout
 - grouping precedence
Accuracy

Stevens' Psychophysical Power Law

\[S = I^n \]

- Electric Current \(n = 3.5 \)
- Color Saturation \(n = 1.3 \)
- Blk Lightness \(n = 1.2 \)
- Length \(n = 1.0 \)
- Area \(n = 0.7 \)
- Loudness \(n = 0.67 \)
- Brightness \(n = 0.5 \)
Discriminability

- limits on available dynamic range
Separability vs. Integrality
Separability vs. Integrality

- position
- hue (color)

- fully separable

- 2 groups each
Separability vs. Integrality

- **Position**
 - Hue (color)
 - Fully separable
 - 2 groups each

- **Size**
 - Hue (color)
 - Some interference
 - Difficult to discriminate small items
 - 2 groups each
Separability vs. Integrality

- **position**
 - hue (color)
 - fully separable
 - 2 groups each

- **size**
 - hue (color)
 - some interference
 - difficult to discriminate small items
 - 2 groups each

- **size: width**
 - size: height
 - some/significant interference
 - integral percept: area (planar size)
 - 3 groups
Separability vs. Integrality

- **Position hue (color)**: fully separable, difficult to discriminate small items, 2 groups each
- **Size hue (color)**: some interference, integral percept: area (planar size), 2 groups each
- **Size: Width, Size: Height**: some/significant interference, integral percept: color/hue, 3 groups
- **Red, Green**: major interference, 4 groups

Legend:
- Red
- Green
Separability vs. Integrality

- **Position hue (color)**: 2 groups each
- **Size hue (color)**: some interference
- **Size: width**: some/significant interference
difficult to discriminate small items
- **Size: height**: integral percept: area (planar size)
- **Red green**: major interference

- **Integrality**:
 - 2 groups each
 - 3 groups
 - 4 groups
Separability vs. Integrality

- **Separability**
 - Position hue (color)
 - Size hue (color)
 - Fully separable
 - 2 groups each

- **Integrality**
 - Size width
 - Size height
 - 3 groups

- **Interference**
 - Some interference
 - Some/significant interference
 - Major interference

- **Perception**
 - Integral percept: area (planar size)
 - Integral percept: color/hue

- **Groups**
 - 2 groups each
 - 4 groups
Visual Popout
Visual Popout

[Image with two diagrams showing visual popout]
Visual Popout

- parallelism: independent of distractor count
Visual Popout

speed depends on: which channel, difference from surroundings
‘sufficiently different’ is context dependent
Visual Popout

- Speed depends on: which channel, difference from surroundings
 - ’sufficiently different’ is context dependent
Popout Channels: Many But Not All

- Most channels operate in parallel, allowing sufficiently different items to be noticed immediately, independent of distractor count.
- Some channels require serial search, indicating they are not as effective for popout.
- combination searches are serial
 - exception: a few pairs
Visual Channel Types and Rankings

Categorical
what/where

- planar position
- color hue
- shape
- stipple pattern

Relational, Same Category

Grouping

- containment (2D)
- connection (1D)
- similarity (other channels)
- proximity (position)

Ordered: Ordinal/Quantitative
how much

- position on common scale
- position on unaligned scale
- length (1D size)
- tilt, angle
- area (2D size)
- curvature
- volume (3D size)
- lightness black/white
- color saturation
- stipple density
Grouping: Precedence Not Effectiveness

- all channels effective; rank is order of precedence

proximity similarity (color) sim (size) sim (shape)
Grouping: Precedence Not Effectiveness

- all channels effective; rank is order of precedence

proximity similarity (color) sim (size) sim (shape)

containment overrides connection
Power of Planar Position

Categorical
what/where
- planar position
 - color hue
- shape
- stipple pattern

Relational, Same Category
Grouping
- containment (2D)
- connection (1D)
- similarity (other channels)

Proximity (position)

Ordered: Ordinal/Quantitative
How much
- position on common scale
- position on unaligned scale
- length (1D size)
- tilt, angle
- area (2D size)
- curvature
- volume (3D size)
- lightness
- black/white
- color saturation
- stipple density
Color Vision Process

- rods
 - B/W info in low-light conditions
 - not discussed further
- 3 cone types
 - sensors: RGB
- 3 opponent color channels
 - one luminance: black/white
 - two “color”: red/green, blue/yellow
- color deficiency
 - one hue channel collapsed
 - sex-linked mutation: 8% of men, .5% of women
Luminance, Saturation, Hue

- luminance: how much
- saturation: how much
- hue: what

[Stone, Representing Color As Three Numbers, CG&A 25(4):78-85]
Ordered: Lum/Sat, Unordered: Hue

- luminance: how much
- saturation: how much
- hue: what

Unique black and white
Uniform differences
Perception & design

[Stone, Representing Color As Three Numbers, CG&A 25(4):78-85]
Discriminability: Categorical Color

- noncontiguous small regions: 6-12 bins

Other Channels

- size: how much
 - small sizes interfere with many other channels
- tilt/angle: both
- shape: what
- stipple: how much
 - interferes with luminance
- motion: how much
 - grabs attention, difficult to attend to other channels
Color As Three Numbers

Stone
Representing Color As Three Numbers, CG&A 25(4):78-85
Trichromacy

- different cone responses area function of wavelength
- for a given spectrum
 - multiply by response curve
 - integrate to get response

Metamerism

- brain sees only cone response
- different spectra appear the same

Metamerism Demo

by Jeff Beall, Adam Doppelt and John F. Hughes
(c) 1995 Brown University and the NSF Graphics and Visualization Center

[www.cs.brown.edu/exploratories/freeSoftware/repository/edu/brown/cs/exploratories/applets/spectrum/metamers_java_browser.html]
Color Matching Experiments

Color Matching Functions

Stiles-Burch, negative lobe

CIE standard, all positive

Color Spaces

- RGB: convenient for machines
 - these three channels **not** separable
- CIE XYZ: from color matching functions
 - perceptually based
- L*a*b*: from XYZ + reference whitepoint
 - perceptually linear, safe to interpolate
- HLS: simple transformation of RGB
 - good: separates out lightness, hue, saturation channels
 - bad: lightness **not** true luminance
 - careful: only *pseudo*-perceptual!
Lightness vs Luminance

Corners of the RGB color cube

Luminance values

L* values

L from HLS
All the same

Spectral Sensitivity