
Modifying Route Map Visualizations For Walking Smartphone Use

Louise Oram

Computer Science, University of British Columbia

ABSTRACT
This project explores visualizations for route maps that are
displayed on a smartphone. Route finding and following is a
multitasking situation that would benefit from better readability of
the map, as it would decrease the cognitive effort required for the
user to synthesize the information they need to follow the route.
This can be done through various information visualization
techniques, such as focus + context and highlighting. An initial
implementation of such visualizations is created for an Android
smartphone, and its strengths and weaknesses are discussed.
Finally, conclusions are drawn about how the route map
visualization could be improved and what areas of future research
would be beneficial.

KEYWORDS: Maps, route finding, visualization, smartphone.

1 INTRODUCTION
Finding your way from one place to another used to be

accomplished by asking for directions or using a printed map.
With the advent of the internet, maps became available online and
algorithms were used to find routes, which then required printing
or sketching out. Smartphones now allow one to carry these
capabilities around in the pocket and therefore route-find on the
fly.

For the purpose of this paper, readability will be defined as
the ability for a map to be easily understood when looked at (for
instance, being able to easily find where you are currently on the
map). Maps are often used while walking, so the basic problem of
readability has been around a long time. However, now that route
maps can be created we have the potential to increase the
readability in a way that is specific to the route being taken.

Smartphones add a layer of problems as well as introduces
some advantages. A major drawback is the small screen, since
when zoomed in to a readable level some or most of the route may
be off the screen. This map must then be interacted with through
touch gestures such as dragging to pan, and pinching to zoom. An
advantage is that smartphones have position capabilities, allowing
the map to indicate where the user currently is (with a varying
level of error depending on the signal). Additionally, they can
orient the map to the surroundings as the user changes the
orientation of themselves and the phone.

This paper focuses on the problem of increasing the
readability of route maps on smartphones. Data from Google
maps and its route finding capabilities were used. The Android
operating system was used as the mobile development platform,
and a Nexus One smartphone borrowed from the Human
Computer Interaction group at the University of British Columbia
was used.

1.1 Related Work
As smartphones become more prevalent, more research is being

conducted on interaction with these devices. One avenue of

research is their use while walking, as would be seen when
navigating a route. Schildbach and Rukzio [8] saw that walking
slowed when reading text on a smartphone, regardless of the font
size. Three font sizes were tested, and the increase in scrolling
needed when larger font was used is thought to mediate the effect
of the text being easier to read. There was also a trend towards
users stopping more when reading the small font size.
Additionally, a significant effect was found for text size on
subjective workload [8]. This supports the idea that increasing the
readability of maps will decrease workload.

Figure 1. How can we increase the readability of route maps to be

viewed on a smartphone while walking?

To mitigate problems with locations being off the screen,
Baudisch and Rosenholtz developed a technique called Halo [4].
This technique virtually extends the off-screen locations by
surrounding them with a circle large enough to show near the
edge of the current frame of the screen. This technique was
compared to arrows with the distance of the location displayed
within them, and the Halo technique was found to be faster for
completing tasks such as finding the closest restaurant among 5
restaurants [4]. This visualization technique would likely help
users of route maps understand where the destination is in relation
to where they currently are on the route.

Maps are easier to follow when oriented to the surroundings.
Additionally, an egocentric frame of reference is generally
assumed to be more natural, as people tend to describe a scene
from their viewpoint [9]. Creating a route finding application that
shows the user where they are on the map and lines the map up
with the environment will reinforce this frame of reference as it
enables them to imagine themselves as a location on the map.

Agrawala and Stolte [1] created an application that used
cartographic generalization techniques to render route maps. They
found that almost all users would use their application again,
although some wanted to use it in conjunction with standard
driving directions. In a later study Kopf et al. [7] created software
that runs with Bing maps, and creates a destination map. To
facilitate finding the destination, the area surrounding it is
enlarged and the detail is kept, whereas the areas leading to it are
simplified and shrunk. Both these examples use non-uniform scale
to ensure that the information needed for each stage of the route is

olouise@cs.ubc.ca

available. However, these examples applications are more suited
for driving, or generally traveling longer distances that are easier
to simplify. When walking, the simplification of the map requires
different details, as there are more visual cues to use and less
reliance on roads and road names.

1.2 Motivation
Walking while looking at information on a smartphone

increases the overall cognitive load, as there are many distractions
and obstacles (figure 1). Therefore a route map that can be
designed in a way that decreases mental effort on the part of the
user will be beneficial. As seen in the above-related work, this is
often accomplished with generalization. A simplification of the
map in figure 1 is seen in figure 2, as an example of
generalization.

Figure 2. Example of route map generalization showing the
suggested route (blue dots), the destination (red X), and

relevant details such as roads and buildings.

In order to reduce cognitive load when looking at the route
map, we need to make it easier to get salient information to users’
eyes when they glance at the screen. Frequent users of maps, such
as orienteers, develop heuristics for route planning and seeing the
information needed for the current navigation task [5]. How can
route maps automate this and create a visualization for the user?

The rest of the paper is organized as follows: Section 2
describes the proposed Android-based application, its
implementation, and scenarios of use. It also contains screenshots
of the application, and explains its functions. Section 3 discusses
what was learned from the process as well as the strengths and
weaknesses of the project. Section 4 concludes by outlining ideas
for future work.

2 SOLUTION
Maps generally employ visual layering, colour and shapes in

their legends. However, when adding a route to a map, there are
additional ways to aid visualization. Routes involve one or more
decision points along the way where the user must use the map to
interpret where to go. As seen in the related work section,
generalization and distortion visualizations are often used to
increase the readability of route maps. This implementation chose
to use focus + context to get more salient information about
decision points along the route across to the user. It was decided

that integrating the focus + context into one view was a better use
of screen real estate than dividing the screen into dedicated focus
and context sections. The areas of focus used higher scale maps to
offer more detail and were highlighted by fading the background
map. The halo off-screen visualization [4] was used to help the
user understand the direction and distance of the destination from
their current location. In this application, a circle centred at the
destination location with a radius such that the edge of the circle
touched the current location was drawn. Since the view when
following the route is egocentric, the arc will always go through
the middle of the screen. This is different than the implementation
in [4], which had several arcs placed very close to edge of the
screen. Since only one arc was used in our implementation, it is
better to have the arc go through the centre of the screen to
maximize the intuition that the arc provides about direction and
distance to the destination.

2.1 Implementation
The outcome of this project is an Android application that can

be installed on any Android phone. However, to develop or
compile the code on a computer, one must install the android
software development kit (SDK) and download the essential
components for the development environment [3]. Eclipse is the
recommended integrated development environment (IDE), as
there is a plugin available to integrate with the SDK.

Initially Bing maps was considered for the application, since
it appeared to have better data for smaller roads useful for walking
routes. However, upon exploration very little documentation or
examples were available for Bing maps, as compared to Google
maps. For this reason I chose to use Google maps as I could still
work on the visualizations, but have an easier time finding
documentation to understand how play with the map.

To create a basic Android application, a main ‘Activity’ must
be defined (figure 3). This class sets up any ‘Views’ and has
access to the phone’s location information. The map view class
has functionality to display the Google map as well as detecting
touch events on the map. The map view uses a number of overlay
classes to draw on top of the map.

To load maps in the Android application, a map view is
created which uses an application programming interface (API)
key (stored in the main.xml file) for Google maps access. The
map view must be programmed to handle touch events within it,
as desired (see code in MyMapView).

The main development hurdle in this project is the lack of an
API for function calls to access Google route information. Route
data was downloaded from a Google website by specifying
locations in URL parameters. The start location coordinates was
acquired from the phone’s current location and the destination
was set when the user double tapped the screen. The pixel
coordinate of the tap location was translated to the latitude and
longitude coordinates, based on the current state of the map view.
These coordinates were then encoded into a URL string, which
was used to get a JSON file off Google’s route finding server.
This JSON file was then parsed. For this project I extracted both
the full route, as well as the coordinates of each ‘leg’ of the route.
The starting points of these legs seem to line up with decision
points, such as turning points or major intersections. When two or
more decision points were located close to one another, they were
merged into a single point.

Figure 3. Outline of the code.

The basic map cannot be modified; the only way to modify
the map for android is by using overlays, which are drawn on top
of the map. Each of these overlays needs its own class, since for
different types of overlays the draw function must be overridden
to create the desired graphics. When an overlay is instantiated, the
draw function is called and updates as the map is zoomed in and
out. The types of overlays used in the application range from a
simple semi-transparent shading used to fade the map
(ShadeOverlay), to an more complicated overlay that draws static
map images on top of each of the decision points (ImageOverlay).

The route is passed into the route overlay to draw the route as
a dark grey line (RouteOverlay). The coordinates of the decision
points are passed into ImageOverlay as well as HolesOverlay. The
image overlay uses static map images, which are procured by
creating a series of URL’s and saving the returned bitmaps. The
class VisOverlay draws a red X at the destination and creates the
red halo circle that will always extend to the current location.

HolesOverlay is an attempt at an alternate visualization, with
holes cut in a semi-transparent overlay around the decision points.
While it did achieve the goal of highlighting the decision points, it
did not achieve the desired distortion, as the whole map was still
at one scale.

The calls to the overlays are found in the function
onInterceptTouchEvent, in the section that detects double taps.
Therefore, to see what happens with different overlays or different
orderings of the overlays you must comment in/out or re-order the
calls to the overlays there.

Lastly a button to start or stop the application following the
current location was added. The code for this is found in the main
activity, as the button is actually a separate view. It did not need a
separate class since it is not as complicated as MapView, and I did
not need to extend its functionality.

Many standard java libraries were used, as can be seen by the
lengthy import lists at the top of some of the files. Overall, some
of the functions needed already existed, but were overridden in
order to do as was desired for this application. The main design
hurdles for this application was determining what overlays would
work well, which are discussed in the next section.

2.2 Application
Potential use case:

A user has just gotten off the bus and wishes to find the
quickest route to the community centre from there. She takes out
her smartphone and opens up the application. Her current
location is displayed, and she pinches to zoom in to the
surrounding area. She pans around looking for the community
centre and double taps it. Once the route is drawn, she clicks the
‘walk’ button and the application centres around her current

location at an appropriate zoom level. She then walks to the
community centre, and glances down at the application
intermittently to see when her location dot approaches a turning
point.

Figure 4. A zoomed out view of the route.

The application starts as a basic map with the current location

displayed. The user can then drag to pan around on the map, and
pinch to zoom in and out of the map. Once the destination has
been decided, the user double taps it and the device retrieves the
information for the route. If the user is zoomed out she will see
the plain route (figure 4), but when zoomed in further, overlays of
high zoom maps or air-photos will be displayed under the route at
the decision points (figure 5). The button in the upper right corner
allows the user to enter walk mode, where the map continually
centres on the current location as the device receives location
updates (figure 6). Clicking that button again (it will change from
‘walk’ to ‘stop’ after being clicked the first time) will exit that
mode so the user can pan around the map if she wishes.

Figure 5. Many of the functions of the application are seen in this

image, such as an air-photo at the decision point, and the red
arc indicating the direction of the destination.

Figure 6. In this example the user is looking at the detail at the
destination, but if they then click the walk button the

application will pan to the current location.

3 DISCUSSION
Many different types of overlays were experimented with

for this project, and a lot of tweaking (such as setting the size and
scale of decision point images) was necessary to find a good
balance.

I tried using different static maps for each zoom level, but
retrieving so many maps significantly decreased the overall speed
of the application, so this was deemed unfeasible. Instead, a single
set of static images were used and a compromise for the scale and
size of the single set of bitmaps had to be decided on.
Unfortunately these maps work best for certain scales, so a default
zoom level was set for the walking mode.

A limitation of the smartphone used is that it would not
accept my SIM card, so I could only access the location
capabilities if connected to the internet. This would have been a
significant limitation if I were to do further testing, particularly
since the Wifi at UBC does not seem to offer very good
triangulations for the location updates of the device.

3.1 Strengths and weaknesses
An overall strength of creating an Android application is that it

works on a widespread mobile platform. Additionally it integrates
the location data with the map, and can follow the location when
requested. This allows the user to easily find where they are, and
the map can orient to the surroundings making it easier to
understand the map in relation to the environment.

The information visualization aspects are outlined below:

Strengths:
- Readability: draws the route in a highly visible manner.
- Focus + Context: is a first attempt at creating an effective

focus + context visualization for route maps.
- Small screen: effective use of off-screen visualization.
Weaknesses:
- Distortion: too much distortion due to using overlays of

static maps (figure 7).
- Accuracy: unsure of what information is used to navigate

with, and may vary from user to user.

Figure 7. Problems arise when overlaying static map images on
the background Google map, as the edges do not line up well

for all zoom levels.

Figure 8. The previously mentioned holes overlay does not have
any distortion, but does not offer any additional information

about the decision points.

The outlined strengths are small, but are an exploration of
how this type of application would be set up. The weaknesses are
large and problematic, and the distortion problem would be hard
to fix without the ability to distort the base map, which is not
possible with only overlays. Accuracy could likely be fixed with
empirical studies to understand what people look for in the
environment when they are using a route map. This would create
weightings for each map feature, however it is possible these
weightings would not work for all users. For a route map to be
created optimally for a specific user you would need to know their
personal weightings, so as to display the features most useful to
them. To determine which objects (such as buildings, streets, or
landmarks) should be shown on the route map, an Importance
metric (I) could be defined. This value could be computed as a
weighted sum of various factors (such as building or street size)
that determine the importance of the object, as seen in Equation 1:

 (1)

where the variables are defined as:

I = Importance of a certain object
w = Weighting of a factor
F = Factor associated with the object
d = Distance of object from the decision point
N = Number of factors considered

Factors such as the size of the object, distance from other objects,
or the generic importance of the object could be considered. One
could then either choose a threshold for what to include based on
the value of I, or start by adding the object of highest importance
until a certain accumulated value of I has been reached. Acquiring
and displaying these objects would, however, require access to the
vector elements of the map.

Figure 9. For this intersection what type of information would be
most useful, a simple map, air-photo, or something else?

If there were more time I would have liked to get more

feedback about the visualizations, and not just informal feedback
from a few friends, to make sure my personal ideas about maps
work well for other people. Designer bias is obviously a major
concern for this project, particularly because of my experience
with using and creating maps. For instance there are several types
of static maps available for overlays, and feedback on what is
intuitive to users would be beneficial. It is possible that they are
unfamiliar with using air-photos for navigation, even if it
hypothetically offers more information (such as the location of
forested areas in figure 9).

The usefulness of different map features for route finding
would need to be tested in order to determine the weighting of
each feature (Equation 1, w). For feasibility this could be done
with a logging study, where users record what they use to make
decisions when navigating with a smartphone (or even speak
aloud and have the phone record it while they are performing the
task).

Once these visualizations are more refined I would need to
test if they are more readable than a traditional route map. This
could be done by monitoring the time the user spends looking at
the screen of the smartphone, as well as the time taken to

I =
wjFj

j=1

N

!

d

complete the task. Less time spent looking at the screen would be
a reasonably direct measure that they are able to get the visual
information from the map more easily. If they only took less time
to complete the task using the visualization it would suggest
indirectly that they were able to relate the map to the surroundings
faster, likely because it is more readable while walking.

4 FURTHER WORK AND CONCLUSIONS
In retrospect, it is possible that a website tailored for loading on

a smartphone would have been a better choice for implementing
this project. It appears that websites can now ask the user if they
will allow access to the location information from the device, and
most importantly there is an API for the vector layers for
JavaScript [6]. It is easier to modify the map when vector layers
are available since the data in the map can be altered. Also, this
might have been faster to develop initially, and left more time for
exploring visualization techniques and ideas.

The basic idea behind this visualization project is that it will be
easy for the user to see when their location dot enters the area of a
highlighted decision point, and that this will cue them to pay more
attention to the map and the surroundings so as to follow the route
accurately. Smartphones usually have the ability to produce
vibrotactile feedback. An interesting idea for future work would
be to give some a tactile signal when the location dot approaches a
decision point, so that the user knows when to glance at the
screen.

Overall this is a first pass at implementing an information
visualization solution for route maps on a smartphone. I went
from no familiarity with the Android development platform, to
being relatively comfortable, and interacted with a smartphone
more than I ever have before. Despite the restrictions the
development environment created for the visualization options, I
successfully explored some of the design space for the route map
visualizations.

REFERENCES
[1] Agrawala, M., & Stolte, C. (2001). Rendering Effective Route Maps:

Improving Usability Through Generalization. In Proc. Siggraph.
[2] Android. (2011, December 9). Package index. Retrieved from

http://developer.android.com/reference/packages.html
[3] Android. (n.d.). Installing the SDK. Retrieved from

http://developer.android.com/sdk/installing.html
[4] Baudisch, P., Rosenholtz, R. (2003). Halo: A Technique for

Visualizing Off-Screen Locations. In Proceedings of CHI 2003, 481-
488.

[5] Eccles, Walsh & Ingledew. (2002). The user of heuristics during
route planning by expert and novice orienteers. Journal of Sport
Sciences, vol 20: issue 4, p327-337.

[6] Google Code (n.d.). Google Maps JavaScript API V3. Retrieved
from http://code.google.com/apis/maps/documentation/javascript

[7] Kopf, J., Agrawala, M., Bargeron, D., Salesin, D., Cohen, M. (2010).
Automatic Generation of Destination Maps. SIGGRAPH Asia,
158:1-158:12.

[8] Schildbach, Rukzio. (2010). Investigating selection and reading
performance on a mobile phone while walking. In Proc. MobileHCI.

[9] Tversky, B., Hard, B. (2009). Embodied and disembodied cognition:
Spatial perspective-taking. Cognition, 110:1, 124-129.

