RelaViz
Graph Visualization of Learned Relations Between Entities

Joel Ferstay - joelaf@cs.ubc.ca
RelaViz: Design Study Project

Apply Visualization to Assess the Performance of a Machine Learning Algorithm

Type of Algorithm: Relational Learning Algorithm

Why? Help algorithm designers verify whether or not the relations their algorithms predict “make sense”
Part I: The Domain
Overview: A Relational Learning Algorithm

INPUT:
- Entities: [dog, cat, fur, claws]
- Relations: [has]
- Entity-Relation-Entities: [(dog, has, fur), (cat, has, fur), (cat, has, claws)]

OUTPUT:
- New Predictions: [(dog, has, claws)]

[Bordes et al 2011]
What’s Relational Data?

Entity: Cat
Relation: Has
Entity: Fur

I made you a cookie...
but I eated it.
Relational Data is Directional

Entity: Cat Relation: Has Entity: Fur

I made you a cookie...

but I eated it.
Relational Data is Directional

Entity: Fur
Relation: Has
Entity: Cat

I made you a cookie...
but I eated it.
Relational Data is Directional

Entity: Fur
Relation: Has
Entity: Cat

NO

I made you a cookie...
but I eated it.
How Do We Encode Entity-Relation-Entity Data?

- As a triplet \((e^l, r, e^r)\)

- This is a compact, specific encoding which ensures the directionality of the relationship is preserved

 For instance: (cat, has, fur) YES ; (fur, has, cat) NO

[Bordes et al 2011]
What is Relational Learning?

- Given sets of entities, relations, and entity-relation-entity data, learn to predict new entity-relation-entities
We’re Given:

Entity: Cat

Relation: Has

Entity: Fur
We’re Given:

Entity: Cat
Relation: Has
Entity: Fur

Entity: Dog
Relation: Has
Entity: Fur
We’re Given:

Entity: Cat
Relation: Has
Entity: Fur

Entity: Dog
Relation: Has
Entity: Fur

Entity: Cat
Relation: Has
Entity: Claws
We Predict:

- Given the existing entity-relation-entity the algorithm learned from before, might predict:

 Entity: Dog Relation: Has Entity: Claws
Why Do We Want To Learn Relations?

- Another step towards building thinking machines with “common sense”

- It is an advantage to be able to predict things ahead of time – we have predicted “furry things” usually have claws

- When our agent encounters an unfamiliar “furry thing”, it does not have to walk up and inspect its paws to see if it has claws

[Bordes et al 2011]
Part II: Why Visualization for Validation?
Current Machine Learning Algorithm Validation

- Current state of affairs for conventional machine learning validation:

Split into:

- Benchmark Labeled Data Set
- Training Data
- Test Data
- Validation Data
Current Machine Learning Algorithm Validation

Train algorithm on data

Benchmark Labeled Data Set

Training Data

Test Data

Validation Data
Current Machine Learning Algorithm Validation

Benchmark Labeled Data Set

Training Data

Test – Get some % Correct Classification Rate e.g. 82%

Test Data

Validation Data
Current Machine Learning Algorithm Validation

- Benchmark Labeled Data Set
- Training Data
- Test Data
- Validation Data

Go Back and Modify Algorithm to Improve
Current Machine Learning Algorithm Validation

Benchmark Labeled Data Set

- Training Data
- Test Data
- Validation Data

Validate - Get some % Correct Classification Rate e.g. 85%
Machine Learning Algorithm Validation

Conventionally, we have an automated way of getting a quantitative, percentage measure of new relations we’ve learned that were “correct”

E.g. Classification Rate 83.7 %

So ... what’s the problem?

[Bordes et al 2011]
Why Visualization?

- There is no problem if we just care about assessing performance on a painstakingly annotated benchmark data set by only looking at a classification rate.

- However, if we want a richer understanding of identity of the new relations, and the degree of uncertainty associated with those relations, we need something more...
Why Visualization?

- Here’s a current approach for visualizing new relations learned by a relational learning algorithm:

```
Table 7: Knowledge extraction. Examples of lists of e\(^r\) predicted with the embeddings learnt out of raw text for e\(^l\) = "people". Lists are displayed by decreasing triplet probability density order.

<table>
<thead>
<tr>
<th>e(^l)</th>
<th>people</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>build</td>
</tr>
<tr>
<td>e(^r)</td>
<td>livelihoods</td>
</tr>
<tr>
<td></td>
<td>homes</td>
</tr>
<tr>
<td></td>
<td>altars</td>
</tr>
<tr>
<td></td>
<td>houses</td>
</tr>
<tr>
<td></td>
<td>ramps</td>
</tr>
</tbody>
</table>

[Bordes et al 2011]
```
Why Visualization?

Presenting the data in table format will not scale up to the visual inspection of many entity-relation-entity data and many relations between entities.

Table 7: Knowledge extraction. Examples of lists of e^r predicted with the embeddings learnt out of raw text for $e^l = "people"$. Lists are displayed by decreasing triplet probability density order.

<table>
<thead>
<tr>
<th>e^l</th>
<th>r</th>
<th>e^r</th>
<th>people</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>build</td>
<td>destroy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>won</td>
<td>suffer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>control</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>livelihods</td>
<td>icons</td>
</tr>
<tr>
<td></td>
<td></td>
<td>homes</td>
<td>virtue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>altars</td>
<td>donkeys</td>
</tr>
<tr>
<td></td>
<td></td>
<td>houses</td>
<td>cowboy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ramps</td>
<td>chimpanzees</td>
</tr>
</tbody>
</table>

[Bordes et al 2011]
Why Visualization?

- There is no truly expressive tools for assessing a relational learning algorithm’s performance, at a fine grain of detail.

- There is no ability to automate validation of new, learned relations on un-encountered data sets

- Therefore, there is a need for an effective visualization tool
Part III: The Visualization Solution
Task Characterization

Ideally, relational learning algorithm designers should be able to:

- Examine the identity of learned relations between two entities
- Examine the directionality of the relation between two entities
- Examine the probability that a new, learned relation is true
- Explore the difference between the known, training relations, and the new, learned relations for patterns
Data Abstraction

- Node-link Graphs

- Graphs are a natural choice for visualizing relational data

- High visibility for multiple relations, and directionality of relations between entities
My Project: RelaViz
Visualization Tool

- A visualization tool for inspecting predicted relations between entities produced by a machine-learning algorithm.

- This activity is necessary to determine whether relations match reality, and make intuitive sense.
RelaViz: Scenario Of Use

The goal is to inspect the relations between entities at a finer degree of resolution. The user will see the following screen upon initializing the system:
RelaViz: Scenario Of Use

- Select File > Import Data to evoke the OS’s native file browser to load graph data:
RelaViz: Scenario Of Use

Graph will appear in the window, along with several options and a zoom slider controller to the left of the window. A graph overview is also present:
RelaViz: Scenario Of Use

- Can click and drag whitespace to navigate graph:
To zoom in on a particular area of interest, we can select the “Zoom” button on the left of the display, and click on an area of interest:
RelaViz: Scenario Of Use

- Placing the cursor on the link will split it into multiple links indicating the various relations between the two entities. This shows the uncertainty of relations, too.
Selecting “Ground Truth” indicates the true, known relational links in red, and shows the relations learned by the algorithm in blue.
Part III: Project Update
Project Update

- **Note**: Joint project with CPSC 540: Machine Learning.
- Still in the process of ironing bugs out of my implemented relational learning algorithm.
- To deal with this, I have produced synthetic data as a stand in for visualization in the meantime:
 - Example data point: [1,1,2,0.35]
 - Translation: Entity 1, Relation 1, Entity 2 with 35% confidence
Project Update

- Have assessed the strengths and weaknesses of the massive graph yoolkits GraphViz, Gephi, and Tulip
- Have selected Gephi as the toolkit for implementing this project
- Able to load synthetic data into Gephi, and display a directed graph in a simple display
- No link splitting, or entity and relation labeling yet
Gephi Toolkit Sample Implementation

Example display of entities and directed relations between them using Gephi:
Part IV: Discussion of Current Challenges
Back To Visual Encodings

- Still iterating over how to visualize relational links

- Current Approach:
Back To Visual Encodings

BUT, In a recent paper evaluating link types, TAPERED and ANIMATED edges were found to be the most effective over standard arrow:

Figure 1: All directed-edge representations used in our initial (a to j), follow-up (b, k, l), and current study (b, l, m, n, o). (a) standard arrow – S, (b) tapered – T, (c) dark-to-light – DL (a.k.a intensity – I), (d) light-to-dark – LD, (e) green-to-red – GR, (f) curvature – C, (g) tapered-intensity – TI, (h) tapered-curvature – TC, (i) intensity-curvature – IC, (j) tapered-intensity-curvature – TIC, (k) biased curvature – Cb, (l) animated – A, (m) animated compressed – Ac, (n) glyph – G, and (o) glyph compressed – Gc.

[Holten et al 2011]
But, in a recent paper evaluating link types, tapered and animated edges were found to be the most effective over standard arrow:

[Holten et al 2011]
In a recent paper evaluating link types, TAPERED and ANIMATED edges were found to be the most effective over standard arrow:

Figure 1: All directed-edge representations used in our initial (a to l), follow-up (b, k, l), and current study (b, l, m, n, o). (a) standard arrow – S, (b) tapered – T, (c) dark-to-light – DL (a.k.a intensity – I), (d) light-to-dark – LD, (e) green-to-red – GR, (f) curvature – C, (g) tapered-intensity – TI, (h) tapered-curvature – TC, (i) intensity-curvature – IC, (j) tapered-intensity-curvature – TIC, (k) biased curvature – C_b, (l) animated – A, (m) animated compressed – A_c, (n) glyph – G, and (o) glyph compressed – G_c.

[Holten et al 2011]
Back To Visual Encodings

- I’ve unfortunately chosen **standard arrow with curve**, which, separately, scored relatively less in the evaluation paper:

- My problem now may be to find bi-directional analogues for the tapered and animated links they favor, or look elsewhere
Back To Visual Encodings

- What’s your opinion?
- Given that this is a directed edge:
Back To Visual Encodings

What’s your opinion?

Should this be the bi-directional analogue?
Back To Visual Encodings

- What’s your opinion?

- Should this be the bi-directional analogue?
Another problem, channel capacity.

We’re doing okay with a few relations, but...
Another problem, channel capacity.

Many?

Might become illegible!
Another problem, **channel capacity**.

Possible Solution:

Bars indicate a **relation**, and bar height is the **level of uncertainty** associated with each relation.
Another problem, channel capacity.

Hovering the cursor over the bar reveals the relation’s identity and the uncertainty associated with it.
Further Questions

- What kinds of information should be accessible from an overview of the graph?
Further Questions

- Group encoding for quick browsing and showing large scale relationships?
Further Questions

- Allow for interactive data labeling so an algorithm designer can mark relations that they “approve” as making sense?

- Here Relation 4 is a ground truth, but suppose predicted Relation 3 is correct, too:
Further Questions

- Allow for interactive data labeling so an algorithm designer can mark relations that they “approve” as making sense?

- Here Relation 4 is a ground truth, but suppose Relation 3 is correct, too:
Thank You

- This completes the status update for the RelaViz Project.