Perception & Information Visualization

Matthew Brehmer
CS533C Topic Presentation
November 25, 2009

Outline / Colour + Faces / Motion / Haptics / Q + A

- Face Perception & Colour
 - Motion
- Haptic Perception

Visualizing Data with Motion

Outline / Colour + Faces / Motion / Haptics / Q + A

- Background
 - luminance measuring techniques based on matching paradigm
- for InfoVis, a predetermined pattern of luminance variation is often desired
- Current Practice / Previous Work
 - minimally distinct border (MDB) challenging with different chromaticities
 - threshold face images

Method

- replace threshold image colours: black with a shade of grey, white with a colour
- one face appears positive
- User study
 - compare technique with adapted MDB
 - preserve border length
 - task
 - adjust HLS lightness
 - find cross-over point

Results

- same accuracy and RT as MDB
- better precision than MDB
- Colour map generation
 - user study: 1st step in creating isoluminant colormap
 - avg. control pts. across participants
 - interpolate colormap values in RGB space (with γ estimate)
- can also generate colormaps with monotonically increasing luminance

Flicker experiment

- target elements flicker at different rate than background elements
 - evaluated:
 - cycle length f_c
 - cycle difference Δf
 - coherence
 - results (based on error rates, RT):
 - non-coherent error rates at chance
 - coherent trials: Δf of 120 ms easy to detect

Outline / Colour + Faces / Motion / Haptics / Q + A

- Velocity experiment
 - target elements move at different rate than background elements
 - evaluated:
 - absolute target velocity v_t
 - velocity difference Δv
 - results (based on error rates, RT):
 - v_t doesn't matter
 - Δv more than 10x/s easy to detect (0.43 degrees)

Implications + Applications

- highlight changes in a data set over time or space
- temperature and pressure gradients in meteorological datasets

Outline / Colour + Faces / Motion / Haptics / Q + A

- Critique
 - interaction of motion cues not evaluated
 - possible interaction with non-motion cues
 - representative behaviour of real-world cues
 - grid layout of stimuli appropriate?
 - increased cognitive load for processing motion

Outline / Colour + Faces / Motion / Haptics / Q + A

- Direction experiment
 - target elements move in different direction than background elements
 - evaluated:
 - absolute target motion direction d_t
 - direction difference Δd
 - results (based on error rates, RT):
 - d_t doesn't matter
 - Δd more than 20 degrees easy to detect

Using Haptics to Convey Cause and Effect Relations in Climate Visualization

Questions?