Presentation on
Trees

Anika Mahmud
University of British Columbia
Papers Covered:

- Alfred Kobsa, "User Experiments with Tree Visualization Systems.", Proc InfoVis 2004, IEEE Symposium on Information Visualization, Austin, TX.
Concentration:

- Treemap
- Cushion Treemap
- BeemTrees
- Hyperbolic browser/Star Tree
- Botanical Tree
Goal:

- Visualizing Hierarchical information using-
 Cushion treemap
 Botanical tree.
- Performance measure for viewing hierarchical data of-
 Treemap,
 Cushion treemap,
 Beam tree,
 Hyperbolic tree and
 Botanical tree
Cushion Treemap: Visualization of Hierarchical Information

- Background- Space filling Treemap

Alternating directions, area represents size
1400 files
3060 employees

“Can You See The Structure?”
Shading to the rescue:

Binary tree

Ridges
Creating Bump:

\[\text{Height} = h \left(x_2 - x_1 \right) \]

- Parabola is used to create the bump
- Value of \(h \) is same for each level
- \(h_i = f^i \cdot h \) (\(f \) is a scaling factor between 0 to 1.)
- Diffuse reflection
Ridge + rotated ridge = cushion
Result:

$h = 0.5, f = 1$

$h = 0.5, f = 0.75$
Interaction:

- Embedded in SEQUOIAVIEW
- Color option for file type, level
- Navigation
- Filtering
Critique:

- Good things
 - Simple Method
 - Fast Execution
 - Good for seeing overall structure
- Bad things
 - Ambiguity in size perception
 - Not specific about interaction option
 - No user experiment
Botanical Visualization of Huge Hierarchies

Background: Strand model (Holton, 1994)

- Mimics vascular system
- Each leaf is connected to one strand
- Branch = bundle of strands
Initial Attempt:

- Each directory is a branch
- Each file is a leaf
Three problems

- Continuing branches are hard to see
- Long, thin branches emerge
- Leaves are messy
Smoothed continuing branches
Contract long branches
Files: Phi-balls-Bigger surface bigger file

One big file Many small files
Interaction??

- They say you can interact with the system
Critique:

- Innovative idea, as they say “natura artis magistra”
- Not says enough to understand the navigation
- Hard to get the level
- Hard to compare the size of file
- The sphere fruit makes occlusion of the files in the same directory
- No specific user experiment
User Experiments with Tree Visualization Systems

- Windows Explorer as the baseline
- Compare five tree visualization system
 - ✓ Treemap 3.2
 - ✓ Sequoia View 1.3 (Cushion Treemap)
 - ✓ Hyperbolic browser/Star Tree Studio 3
 - ✓ Botanical Tree/Tree viewer
 - 😞 BeemTrees
Goals:

- Quantitative analysis
 - task completion time
 - accuracy
 - user satisfaction
- Qualitative analysis
BeamTrees
Surprise!!
Tasks:

- Subset of a taxonomy of items on e-bay
- Contained 5 levels and 5799 nodes
- Relationship of the nodes required no domain specific knowledge
- 15 tasks
- Questions were both structure and attribute related
- Subjects answers were recorded
- Subjects interaction was recorded by screen capture software
- User satisfaction data were taken
- The video analysis was performed
Result: Correctness of answer

BT << TM, SV, ST, EX
TV << TM, ST, EX
TV < SV
Result: Correctness of answer con....

Structure-related tasks
- BT << TM
- < EX
- SV << TM < EX < BT
- ST < TM

Attribute-related tasks
- BT << TM, SV, ST, EX
- TV << TM, SV, ST, EX
Result: Average task completion time (in seconds)

- BT >> TM, SV, ST, EX
- BT > TV
- TV >> TM, EX
- TV > SV
- SV > TM, EX
- ST > TM, EX
Result: Average task completion time (in seconds) con.

Structure-related tasks
- BT >> TM, TV, EX
- BT > ST
- SV >> TM, TV, EX
- SV > ST
- ST > EX

Attribute-related tasks
- BT >> TM, SV, EX
- BT > ST
- TV >> TM, SV, ST, EX
- ST >> SV
Result: User satisfaction

Ease of use
BT << TM, SV, ST, TV, EX
BT < ST
EX > SV, TV

Effectiveness
BT << TM, SV, EX
TV << TM, EX

Use system again?
BT << EX
BT < TM
EX >> SV, TV
EX > ST
TM > TV
Qualitative Analysis from Video:

- **Treemap**: Better than other four visualization
 - **Pros**
 - Better user satisfaction
 - Color coding and filtering helped
 - **Cons**
 - Unable to solve time related question
 - Hard to solve global structure task
 - **Suggestion**
 - Search option can be increased
Qualitative Analysis from Video: cons.

- **Sequoia View: Average performance**
 - Cons
 - Hard to solve both attribute and structure related task
 - Users can’t track level
 - Color options are less visited
Qualitative Analysis from Video: con..

- Beam Trees: Worst performance
 - Pros
 - Better for local data visualization
 - Cons
 - Does not show relationship within same level
 - Length and size of beam bear little relationship
 - Suggestion
 - Needs functionality beyond visualization
Qualitative Analysis from Video: con..

- Star Tree: Average Performance
 - Pros
 - Average in all task
 - Easy to child/parent relationship
 - Local Search problems are easy to solve
 - Cons
 - Lacks file details
 - Rotation makes things hard to see
 - Misleading “Bottom Orientation”
Qualitative Analysis from Video: con..

- Star Tree: Better than the worst

 - Cons
 - Lacks basic search options
 - Lacks file attributes
 - Hard to follow directory from the branch
 - Subjects found to depend on explorer like panel

 - Suggestion
 - Needs functionality beyond visualization
Qualitative Analysis from Video: con...

- Windows Explorer: Very good overall performance

- Cons
 - Hard to solve file specific data
 - Hard to compare depth
Critique:

- Good overall analysis
- Analyzed the user activity
- Separated structural and attribute task
- Both good and bad parts were analyzed
- More specific suggestion required
Concluding Remark:

- All have their good things and bad things
- We look forward to find which works better for us
- Works well when complementing each other
Questions?