
NapkinVis: Rapid Pen-Centric Authoring of Improvisational Visualizations

William O. Chao*

University of British Columbia

ABSTRACT

This paper designs and implements a web-based, pen-centric front
end for the Protovis toolkit, allowing users to quickly create
visualizations for improvisational purposes. The design of this
system is constrained to the scope of visualizations that you would
be able to sketch on a paper napkin. Even within this limited
canvas size, it is shown that by creating visual interactions for
authoring visualizations as a combination of separable marks, one
can produce a wide variety of visualizations in a matter of seconds
without needing to write a single line of code.

KEYWORDS: Design

INDEX TERMS: Visualization, User Interface, Toolkits

1 INTRODUCTION

Can you think of a time when you wished you could quickly
sketch a visualization to illustrate a point? Was it while teaching a
graphics class? Perhaps it was while collaborating with a group on
a project? Or possibly it was to look at something quickly while
brainstorming a new idea, and not interrupting your flow of work
in the process? This paper is aimed at exploring fast creation of
visualizations for improvisational purposes, whether it is quickly
demonstrating data live in a presentation, visualizing to move a
conversation in a collaborative process, informally toying around
with visualization ideas to see how they'd look, or even teaching
information visualization principles in a classroom setting.

Anecdotally, many exceptional ideas have begun as simple
sketches and doodles on paper napkins, whether it'd be at an
inpromptu meeting with a colleage at a restaurant, creatively
contemplating different thoughts in a coffee shop, or simply
coming up with an epiphany outside the lab. This type of
interaction was the inspiration for providing a number of creative
constraints to this project by asking ourselves the following
question: “if you could somehow quickly visualize something on
a paper napkin sketch, how would you do so, and what could you
visualize?” Fortunately, in addition to paper napkin sketches,
restrictions for making visualizations quickly on small interfaces
using only a pen-based interaction can also be applied to existing
devices such as tablets, smart phones, interactive tables, pico-
projector based interfaces, and other emerging technologies, so we
feel that they serve as good guidelines for interactions that can
already prove to be useful today.

So given these creative constraints, how can we approach
authoring visualizations quickly?

2 RELATED WORK

There are several existing tools which are aimed at simplifying
the production of visualizations. Excel and similar spreadsheet
programs take a wizard-based approach to automatically generate
visualizations based on predefined templates. Tableau [4] takes
this a step further and allows for quick visual encodings of data
dimensions to visualizations by drag and drop to predefined areas
on the screen. At a more general pen-based active animations
level, programs designed for kids such as eToys [2] or Phun [3]
allow the creation of robots and simulations, which can often act
as interesting visualizations if constructed cleverly. The former
acts as a visual programming language while the latter is a pen-
enabled physics simulation, both allowing for triggering of events,
enabling user directed timing if used in a presentation setting.
Other systems come even closer to the mark of sketch-oriented
design [1]. At an even more general level, several toolkits exist to
allow for the prototyping of visualizations. Protovis [5] provides a
declarative Javascript toolkit which allows for a very rich set of
visualizations to be specified and programmed in minutes. Prefuse
[6] and Flare [7] are equivalent toolkits which allows users to
specify data bindings, visual encodings, rendering, and control of
visualizations to enable production of a very wide variety of
visualizations. Unfortunately, the learning curve of Prefuse and
Flare is very steep. Other toolkits with predefined visualizations
also exist, however some argue about the ease of extending these
visualizations [8, 9, 10]. Another flavour of toolkit is also
available to the designer. Processing [11] is another toolkit which
lets designers focus on programming visual marks without
worrying about any complicated underlying programming
structures (such as initializing many abstract classes). Unlike
protovis, this doesn't provide shortcut marks with well defined
anchors which can be bound to data or other marks, which leaves
the logic of certain visualizations such as stacked area graphs too
difficult for the everyday user. From this, tools become more
general and more difficult to effectively design visualizations,
such as ActionScript, Flash, OpenGL, etc.

This project aims to ultimately create an easily accessible tool
with a flexibility of creating visualizations and a speed of
interaction somewhere in between Tableau and Protovis.

3 OVERVIEW

NapkinVis is a web-based application which allows the user to
quickly generate simple visualizations on a canvas of limited
space, and in a time frame of under a minute. This is done by
providing the user with a sketch-based means of encoding data on
to single marks such as wedges or bars, and then combining the
marks to form compound visualizations. NapkinVis is intended as
a tool to quickly (and possibly sloppily) visualize data on-the-fly,
rather than as a final authoring tool for more formal formats such

Dept. of Computer Science, UBC
201-2366 Main Mall, Vancouver, B.C., V6T 1Z4
*email: wochao@cs.ubc.ca

as when writing reports. As a result, the created visualizations
may not be as precise as visualizations specified by hand, but a
good approximation can be created rather rapidly to give a good
qualitative feel of the data.

Figure 1. Sample screenshot NapkinVis with some sample
visualizations and sketches

3.1 Work-flow

The process of creating visualizations in NapkinVis follows a
work-flow that is centred along an idea suggested by Bostock and
Heer [5] that visualizations can be thought of as a combination of
individual marks, as seen in figure 2. This organizing idea is
central to the design of Protovis. By adopting this idea, and by
providing interactions that support the process of forging
visualizations one mark at a time before combining them to form a
visualization, NapkinVis can act as an effective pen-centric front-
end to the Protovis toolkit as a result. The benefit of this is that the
user can realize some of the flexibility of protovis without needing
to write a single line of code.

Figure 2. From Bostock and Heer (2009), visualizations can be
thought of as composing of separable marks

The basic work-flow of NapkinVis begins with the user
drawing ink strokes on a virtual canvas as they would when
doodling or making quick sketches on a paper napkin. When the
user draws a closed stroke, it transforms into a proto-object that
can be further transformed into a variety of other actors on the
canvas. These actors allow the user to open files containing data
to visualize, create single-mark visualizations, or create compound
visualizations which allows marks to be combined into new
visualizations. A concrete example of this last point would be how
a user can take area charts representing sales numbers of two
employees, stack them on top of one another, and end up with a

stacked area chart where the height represents the sum total of the
sales of the two employees.

3.2 Elements of NapkinVis

There are several elements that comprise NapkinVis and add
various functionality to the system. Each of these components
allow the user to fluidly interact with NapkinVis in order to either
quickly view simple visualizations, or to author more complex
visualizations. A quick summary of these elements is seen in
figure 3.

Figure 3. Elements of NapkinVis, demonstrated in the NapkinVis
interface

The following sections will elaborate more on each element
found in NapkinVis.

3.2.1 Main Canvas

To emulate the feel of sketching on a napkin-sized interface, the
canvas is a fixed-size area that can be sketched on. Sketching is
done by holding down the right-click button and dragging with a
mouse, or simply drawing with a stylus pen. The back end renders
several layers of canvas and visual actors to optimize for speed
during various required re-draws, however to the user this appears
as a single canvas that the user can simply doodle on.

3.2.2 Strokes

To simulate sketching on a napkin-sized canvas, strokes provide a
means for general inking on the canvas. A stroke is a single set of
points drawn by the user on the canvas between a mouse-down
and a mouse-up event. This translates to a stroke simply being a
single line or curve the user has drawn. Depending on context,
strokes can be interpreted as simple inking, proto-objects (objects
that can be transformed into other things such as visualizations),
gestures, links, and so forth.

3.2.3 Proto-Objects

When the user draws a closed stroke, the stroke becomes
transformed into a proto-object. Proto-objects can then be
transformed into other elements by drawing a gesture inside of the
proto-object. The proto-object provides a means of specifying the
location and size of an object that a user might want. For instance,
if the user wanted to create a visualization at location (25, 20)
with a size of 100x150, they could simply draw a box of that size

with the top-left corner at (25, 20) creating a new proto-object,
then draw a gesture inside the proto-object to create a
visualization.

3.2.4 Gestures

Basic gestures are interpreted from strokes by converting the
stroke information into a string of directions (from a character set
of 9 directions), and then using the Levenshtein distance to
compare the stroke with predefined gestures. Because gestures
have been well defined outside of the scope of this project, we
won't go much further in to them.

In addition, as the gesture vocabulary can be customized to suit
the user, the gestures we used will be omitted from this paper.
Thus when it is mentioned that a gesture was used, you may
assume this means we used a different gesture for different actions
or actor types.

3.2.5 File Opener

A file opener is simply a tool that allows the user to specify the
path of a file to open. This tool can be invoked via a gesture
drawn in a proto-object. Once a file is chosen, this widget is
transformed into a data actor which gives access to the data in the
file.

In future versions the file opener will be changed from a button
to a more sketch-based solution such as text recognition, in order
to preserve the doodling 'feel' of sketching on a napkin.

3.2.6 Data

It is assumed for the scope of this project, that all data imported is
tabular data with an evenly-spaced independent variable. What
this means is that every column represents a different data
dimension, and plotting the values on a line chart will not produce
any undesirable artifacts (vs. attempting to plot a set of x and y
values using only the y values and evenly spacing out x).

3.2.7 Data Actor

As seen in the very left of figure 1, the data actor provides the first
real visualization of the data, and is created by opening a data file
using the file opener. Often times, if the user is simply curious
about what their data 'looks' like as part of their work-flow, this
tool may be all the user will need. Each row represents a data
dimension in the parsed file.

3.2.8 Single-Mark Visualization

These are visualizations that contain a single mark, such as a
canonical line graph, bar chart, area graph and scatter plot. These
can be invoked by drawing a gesture inside a proto-object. The
position and size of the visualization are determined by the
respective properties of the proto-object. To select a mark after
the visualization has been invoked, an additional gesture can be
drawn inside the visualization.

The single-mark visualization is initially populated with toy
data so the user can determine the mark used by the visualization.
To indicate this toy data, the initial border of this visualization is
colored brown. When actual data is linked to the single-mark
visualization the border changes to a light gray color.

To link data to the single-mark visualization, the user simply
draws a stroke starting in the data actor to any point in the
visualization itself. To specify which data dimension the user
wants to plot, the starting point must lie within the mini
visualization of that dimension in the data actor.

3.2.9 Compound Visualization

The compound visualization is a tool to compose visualizations
consisting of more than one mark, such as stacked area graphs,
stacked bar charts, and much more. In order to create a compound

visualization the user would simply draw a gesture inside a proto-
object. To then add a mark to the visualization, the user would
simply draw a line from the single-mark visualization to the
compound visualization. The direction of entry determines the
direction the mark will be stacked on previously placed marks.
The location of the stroke's end point within the compound
visualization determines which previous mark the new mark will
be stacked on.

3.3 Summary of Interaction

Each subsequent interaction take users through a more and more
detailed look of their data. In the early stages, the user can simply
see a quick, automatically generated visualization of their data.
Often times this may be all the user needs. Following this, the
single-mark visualization allows an even closer look at individual
data dimensions, offering a variety of visual marks the user can
use, and through parameter specification such as size (and in
effect, aspect ratio) the user can see different aspects of the same
data dimension. The final stage allows the user to view a
dimension's relationship to data in other dimensions by composing
visualizations containing more than one mark.

4 IMPLEMENTATION

NapkinVis was created entirely in Javascript, CSS, and HTML,
and it was programmed in such a way that the entire web
application will run properly as a local file. Rather than drawing
visualizations from scratch, the Protovis toolkit was used to build
and render visualizations. Simple optimizations in speed were
implemented and this system was tested on a netbook running a
relatively slow 1.6 GHz Intel Atom processor. Testing of
functionality was done in version 3.5.5 of the Firefox web
browser running under Ubuntu 9.10, Windows XP, and Windows
Vista, however no formal benchmarking was performed yet as this
project is still in the proof-of-concept phase. Basically, if
interaction was fast enough to be able to sketch comfortably,
development continued without any additional focus on
performance optimizations.

4.1 External Ideas

There were several ideas used in NapkinVis inspired by previous
works. This section will outline some of the ideas used.

4.1.1 Scented Widgets

In order to provide a quick overview of the data the user has
imported, the idea of scented widgets [12] was adopted. Scented
widgets are essentially standard widgets with additional
information about some aspect of the underlying data
superimposed or rendered nearby the widget. With this in mind,
the data actor can then be thought of as a scented list of data
dimensions.

4.1.2 Stroke and Object Promotion

The idea of creating proto-objects that can be promoted to objects
with additional properties, such as a visualization, was actually an
idea adopted from examples in video games. For instance, in the
game Super Mario (www.nintendo.com), the main character can
gain certain characteristics by interacting with certain objects. A
mushroom may increase the character's size, or a flower might
allow the character to throw fire. This behavior can be seen as an
example of how to trigger class inheritance visually. In the case of
this project, the class inheritance is triggered by gestures. This
idea is utilized much further in my previous sketch-based work
outside the scope of this class project.

4.1.3 Visualization as a Composite of Marks

Although several interaction types were experimented with, it
quickly became clear that it is quite difficult to attempt to specify
properties of different marks inside of a compound visualization.
The idea to break down the visualization to individual marks, and
specify properties of each mark individually was thus adopted
from the Protovis paper. This has so far proven to be a scalable
way of thinking about constructing visualizations. In Protovis, this
is done via scripting in a declarative language. In NapkinVis, this
is done visually, so it is quite transparent to the user what is going
on.
Originally a drag-and-drop methodology was experimented with,
however the disadvantages of having the individual marks
disappear as they merge with the compound visualization became
apparent. It is much more difficult to get an idea of what is going
on when these marks disappear. In addition, the user loses the
ability to further author attributes of the individual marks.

4.1.4 Levenshtein Distance for Gesture Recognition

The algorithm for gesture recognition was adopted from the well-
known method of comparing differences between character
strings. This work was simply ported from commonly found
pseudo-code into a Javascript implementation.

4.2 External Libraries

In addition to external ideas adopted into this project, significant
work figuring out how to render the individual visualizations was
saved by utilizing the Protovis toolkit.

4.2.1 Protovis Toolkit

Each visualization component essentially generated an HTML
container (known as a “div” element) to render each Protovis
visualization in, and then dynamically generated code to be
executed by Protovis in order to create the actual visualization.

4.3 Implemented Components

There were many components implemented in order to bring
NapkinVis to its current state. The following sections list some of
the more crucial key components and considerations that went
into them.

4.3.1 Drawing Canvas

The drawing canvas is created in several layers. The two primary
layers contain all drawn strokes. The top-most layer contains only
the current stroke being drawn. This is done so that feedback from
drawing can be seen immediately. When the current stroke is
rendered, it is placed in the further canvas. The other canvas is
only updated when it is changed, unlike the top-most which is
updated at the insertion of new points. The two primary layers are
implemented using the 'canvas' tag, which currently isn't
supported in all web browsers. To improve compatibility, SVG
will be used in the future.

Visualizations are rendered differently. Containers specified by
the 'div' tag are created for each visualization, and protovis is
instructed to draw its visualization in its own specially created div
tag. This allows for the localization of each visualization in the
web page, and individual updates of visualizations without the
need to re-draw everything else that is rendered.

These considerations allow the interactions and visualizations
to be drawn in real-time, even on a slow netbook.

4.3.2 Gestures

In order to implement gestures, strokes were converted into a
string of directions and these were then compared to strings

representing the gesture templates using the Levenshtein distance.
This distance does a rather good job at differentiating fairly
different strokes from one another, however there doesn't appear
to be a good 'fitness' parameter to measure whether a stroke
should be accepted or rejected to begin with. In future versions,
normalized cross correlation between normalized strokes and
templates could provide a metric to help with this issue.

4.3.3 File Opener and File Parser

In order to open files, a workaround was needed as Javascript
does not seem to provide a direct way to access local files.
Basically, in order to open text files the file chooser embedded in
the canvas determines the path of the desired file. This file is then
loaded into a browser frame. A callback then executes a parser
function on the contents of the frame once the text file has been
loaded. Hopefully future versions can provide some sort of more
direct method of accessing data.

Interestingly, it has been suggested that rather than try to open a
file, the user is simply given a text field to copy and paste data in,
which ends up being much simpler to parse using Javascript. This
could potentially be an option in future iterations of this program
once the constraint of 'paper napkin' proportions is relaxed a bit.

Once the data is loaded and parsed, the data is separated into
columns and then visualized to the user.

4.3.4 Visualization for data actor

The visualization for the data actor is a simple one where boxes
with text and a bar chart represent the titles and columns of data in
the original spreadsheet. This visualization was programmed
directly using Protovis. Data is scaled in such a way that the
largest value of the data is 1, and it is shifted in such a way that
the smallest point is 0. Although this will misrepresent data, for
this prototype it appeared to be the best way to scale the data in
order to maximize the small amount of space available to render
the visualizations. In future versions a better scaling scheme will
have to be employed so the user does not get a false sense of the
qualitative aspects of their data.

4.3.5 Canonical Visualizations for Marks

In order to display the data encoded by the single-mark
visualizations, a minimalistic visualization was coded for each of
the marks. This was rendered using Protovis. The simple style was
chosen to convey the feeling that these visualizations were still
components that could be plugged into something. However, they
still contained enough information that the user could make
qualitative judgements on the data by using these visualizations,
such as where minimums, maximums, different types of slopes,
etc., occur within the data. In future implementations, other
aspects such as detail on demand should be included to provide
the user with a richer experience at this stage of the visualization
process. Similarly to the data actor's visualization, the displayed
data was scaled and sometimes translated in such a way that it
maximized the utility of inking that could be done in the small
amount of space provided to visualize.

4.3.6 Hit Detection

Although each Protovis component provides functions to handle
callbacks for things like clicking and mouse movements, it was
found to be much easier to simply keep track of the bounding
rectangles of everything that you could possibly want to interact
with, and simply check collision at every mouse movement. When
an object was 'hit', it would be kept track of as being in focus, and
only collisions with the item in focus was checked for. When the

item was no longer in focus, every possible item that could be
interacted with was checked again. This helped keep processing
hit detection relatively quick, and it allowed a much simpler way
to access the items on the canvas that required specific zones to be
selected later on in the development cycle.

It should be noted that this method seems to be similar to what
other windowing systems do behind the scenes, so although it's
important, it may not be novel.

4.3.7 Compound Visualization

A compound visualization allows users to combine marks together
in order to create a wide variety of visualizations. In Protovis, a
scene graph is essentially constructed where marks can inherit
properties from other marks, and marks can be added to anchors
of other marks. Complete detail can be found in the Protovis paper
[5]. The key point is that this relationship from mark to mark in
Protovis is utilized in NapkinVis. For every mark put into the
compound visualization, the data linked to the mark, the type of
mark, and a reference to a parent mark's anchor is stored in an
array, essentially abstracting the scene graph into arrays of nodes
and links. This allows the user to reference any mark stored in the
scene graph with ease, as an array is one-dimensional in structure.

In order to specify an existing mark, the compound
visualization is divided into equal segments, each representing a
stored mark. Selecting a mark is as simple as dragging the mouse
to a particular coordinate position within the compound
visualization. For instance, in a vertically-oriented visualization
like a stacked bar chart, if there were 2 bar marks in the chart
(such as “sales of James and sales of Janet for every day in the
month of January”), the compound visualization would be
partitioned into 3 equal segments: two for the marks, and one for
the root panel. The user can select a mark (visualized by dots
placed on the mark's specified anchor) by moving the mouse to
the first third of the visualization, the second third, or the final
third. The type of anchor is selected by the direction of entry
when drawing a stroke. So if the user would like to make a
stacked bar chart, the user would draw a line between the bar
visualization and the portion of the graph that specifies the mark
the user would like to stack the new bar on top of. If the user
instead, wanted to obtain a layered bar chart, the user would place
all bar marks on the root panel.

To specify vertically oriented anchors on marks, the direction of
entry would be from the top-down, or from the bottom-up. Top-
down specified marks stack subsequent marks on top of other
marks. Bottom-up places the marks underneath the previous
marks. To specify a horizontal orientation, the user would enter
left-to-right, or right-to-left. Currently this interaction works well
for area charts as stacking is intuitive with these marks, however
some thought will need to be put into other mark types. For
instance, when working with bar charts and entering from the left,
would we want to specify a horizontal bar chart, or do we want a
vertical bar chart with the marks of elements staggered beside one
another?

5 RESULTS

This section will go through a sample scenario of using
NapkinVis to create a visualization, and will show some sample
visualizations that can also be created with this tool.

5.1 Towards Single-Mark Visualizations

The user begins by drawing a closed stroke in order to create a
proto-object. This proto-object is then converted into a file loader
by drawing a gesture inside of the proto-object as seen in figure 4.

Figure 4. Specifying a file opener from a proto-object by drawing a
gesture within the proto-object

The user then uses the file opener to select a data file to open.
When this is completed the application loads the file, parses the
text, splits the data into columns (as it assumes that data
dimensions are stored in columns), and automatically generates
labels for the user. A visual representation of the data contained in
the file is then produced for the user in the form of a data actor.
This data actor shows the data for each dimension in different
rows, with values displayed as normalized bar charts to maximize
ink used to display the data.

The user may then wish to further visualize the data. In order to
specify a single-mark visualization, the user can draw additional
proto-objects, and then convert them into visualizations using a
gesture. When the visualization is created, the user can then pick
which mark will be used to represent the data. Before data is
linked to the visualization, toy data is represented, and the border
of the visualization is colored brown to represent this fact. When
data is linked to the single-mark visualization, this border color
changes to a light gray.

Figure 5. Left: When data files are opened, individual dimensions
are visualized with a scented list widget. Right: Specifying
single-mark visualizations from a proto-object by drawing a

gesture within the proto-object.

Figure 6. By drawing a gesture inside of a single-mark
visualization, the mark type can be chosen

Figure 7. Several types of marks can be selected: dots, areas,
wedges, lines, and bars

There are several marks that the user can chose from in order to
visualize the data in the single-mark visualization. By drawing
different gestures, the user can choose between encoding data
with dots in a scatter-plot, using areas in an area graph, utilizing
wedges in a pie-chart, having a line graph represent the data, or
using bars to draw data in a bar chart.

5.2 Compound Visualizations: Creating an Example
Stacked-Bar Chart

Figure 8. From a proto-object, a compound visualization can be
specified

In addition to viewing the characteristics of a single dimension of
data, the user may then want to compare dimensions against one
another. By utilizing compound visualizations the user can then
compose visualizations consisting of multiple marks, in a wide
variety of combinations.

To create a compound visualization, the user first draws a
proto-object, then specifies a compound visualization by drawing
a gesture within the proto-object.

The newly created compound visualization only consists of a
panel. This panel has a black outline in order to differentiate it
from other components that NapkinVis supports. A panel contains
anchors for the top, bottom, left, right, and center. In order to
simplify things, the system currently supports the use of all but the
center anchor for stackable marks such as bars and areas. Wedge-
based visualizations are placed on the center anchor to begin with.

To create a stacked bar chart, the user first creates single-mark
visualizations consisting of bars. From these, the user can then
place them into the compound visualization.

The direction of entry is important in selecting anchors. In this
example, a stacked bar chart oriented from the bottom-upwards is
desired, so the user will link all marks in a top-down direction.
This is shown in figure 9.

It should be noted that every new mark added to the compound
visualization is encoded in an automatically chosen color from a
palette based on the category 10 palette in Protovis.

5.3 Compound Visualizations: Extending the
Stacked Bar Chart

In figure 10, the user decides they also want to add bars to the top
of the diagram oriented downwards, so a link is created by
entering the compound graph in an upward direction. The link end
position is chosen in such a way that the root panel is selected,
indicated by the brown circle on the top of the compound
diagram.

Figure 9. By drawing lines from the single-mark visualization to the
compound visualization, marks can be placed on existing

anchors. When approaching from the top, marks are stacked
on top of other marks

Figure 10. When linking from the bottom, marks are
placed under already existing anchors

The result of placing the bars on top, oriented downwards can
be seen in figure 11. Because this project aims to give the user a
flexibility that approaches that of a toolkit, it quickly becomes
apparent that some design choices allowed by the system may not
be particularly wise visual encodings. However, we will continue
with one more example to hint at the flexibility of expression in
this system.

Different marks can also be combined in a compound
visualization. In figure 11, the user decides to create an area-based
mark, then add that to the compound visualization. The result is
then seen in figure 12.

Figure 11. Various types of marks can be combined. In
this figure an area mark is being applied to a visualization

composed of only bars to this point

Because NapkinVis is can be used as a prototyping tool, marks
are intentionally rendered transparent in order to show to the user
that occlusion has occurred rather than stacking. In figure 12, it is
clear that the area mark occludes several bar marks that were
placed before it, however we can also see that the bar marks are
stacked on top of one another. In the top right corner of figure 11
however, we can see that some occlusion does indeed occur
between one of the green bars situated at the top of the panel, and
one of the orange bars situated in the stacked bar chart on the
bottom.

Following the authoring of the visualization, the user can then
re-use the visualization should they decide to do so by changing
the data being bound to the individual marks, or by changing the
type of marks themselves.

By using a similar process, it becomes clear that there are many
possible combinations in which one can arrange marks in a
compound visualization. In the next section, a few more simple
examples will be demonstrated.

Figure 12. A compound visualization composed of bar and
area marks

5.4 Some Sample Visualizations

Following are a few samples of visualizations that can be created
from the interactions provided by NapkinVis. These are only a
few samples out of the wide combination of possibilities that are
available to the user.

Figure 13. Area marks are stacked on top of one another
and below one another to produce a mirrored effect in this

stacked area graph

Figure 14. In this visualization a bar chart is combined
with an area graph

Figure 15. A stacked bar chart is created by placing three
different bar visualizations on top of one another

6 DISCUSSION AND FUTURE WORK

6.1.1 Strengths

Even with trivial case of empty visualizations, one can quickly see
that specifying the width, height, x-coordinate, and y-coordinate
for 10 visualizations using Protovis alone would take minutes as
the programmer would need to not only measure the locations
desired on their canvas (a web page, for instance), and then type
in the parameters for 10 different visualizations (assigning each to
a different variable for future use, or dealing with many lines of
code), but this would require some trial and error as visual
feedback is only given when the programmer refreshes the page.
With NapkinVis, visual feedback of drawing rectangles is given
for free, and rather than caring about exact locations, the user can
draw visualizations at the locations they feel like placing them for
the purposes of quickly looking at some data. The benefits only
multiply when we start moving from empty visualizations, to ones
that actually show things!

NapkinVis allows the production of a surprisingly wide variety
of visualizations, with a great number of which being useful. For
instance, a simple stock chart showing highs and lows in a trading
day about an average price can be generated by combining a line
graph representing the average price, with two bar charts that
represent the positive and negative deviations of the trading day.
Although the range of combinations has not yet been explored, the
preliminary results suggest that this tool is taking a step in the
right direction.

The fact that the program runs fluidly on a netbook in an
interpreted language is also encouraging as it seems to suggest
that it may be possible to port the software to other low powered
devices such as smart phones, which could open up an interesting
alternative way to analyze data on the go.

6.1.2 Weaknesses

There are a number of missing basic features in order to keep the
time scale realistic for a class project. For instance, basic features
such as “undo”, “move”, “resize”, “copy”, “paste”, and many
other functionalities are missing as they were not necessary in
creating this proof-of-concept tool, however from a usability
standpoint these would be critical features to include in later
versions.

NapkinVis also has a few weaknesses however which are
inherent to its current design.

With regards to the types of compound visualizations that can
be made, the number of marks that can be combined comfortably
into a visualization is limited to the number of vertical or
horizontal pixels in that visualization. The practical resolution is
far less. This may not be a problem with most visualizations,
however for data with many dimensions, a new interaction
scheme will most certainly need to be devised. Perhaps a large
area with “last added mark”, or standard layouts can be employed
to help tackle this issue.

This tool also lacks the precision of control Protovis as by not
exposing many mark attributes to the user. While restricting the
user's freedom with many automatic decisions is practical for the
everyday user who may simply want a quick look at data before
moving on, this will definitely be an unnecessary wall for power
users and users wishing to author novel visualizations using this
system.

Free-form placement of marks is also missing, and may be
useful for further customization of compound visualizations.

NapkinVis also currently lacks basic visualization components
such as axes, tick marks, labels, etc. In order for this system to
extend its use beyond visualizations suited for very rough,
qualitative analysis of data, these features will need to be
included.

6.1.3 Future Work

When designing the interaction for NapkinVis, it became clear
that there are some parameters that are inherently ambiguous to
define. There are also more parameters than one can comfortably
map to sketch-based interactions such as gestures without the
system becoming too difficult to use. It has been suggested to
offload some of these parameters from memory to interaction
methods involving search, such as visual palettes, menus, etc. As
the benefits of being able to specify these parameters exist, these
avenues of design will certainly be explored in the future.

In addition, when composing single-mark visualizations, it
became apparent that for different types of marks, different
parameters may be more desirable to specify than in others. For
instance, in bar charts, one may want to specify the thickness and
offset of bars, whereas in wedge-based visualizations, being able
to specify the outer radius and inner radius would be more
beneficial. In future versions, these aspects will need to be
considered and good default behaviors will need to be chosen.

One of the most powerful aspects of Protovis, the ability to pass
anonymous functions as parameters is completely missing from
NapkinVis. It would be very interesting to see if it's possible to
include such a feature with the limited set of interactions that a
visual system can provide versus a scripting language.

Other basic functionality which is important to any visual
system are currently being worked on, too. For instance,
interactions for zooming and filtering are being experimented
with. It is unfortunate that the ability to parse text was not
completed for this project, as it could have opened up an entirely
new avenue to be explored. This is yet another open problem for
this system.

NapkinVis has taken its first steps towards being able to
flexibly create quick visualizations, as well as simple
visualizations combining many marks. It still remains an open
problem as to what kinds of attributes will need to be defined in
order to give this tool the same flexibility as a visualization
toolkit. Imagine being able to create novel visualizations on-the-
fly without having to write a single line of code. I remain hopeful
that this is something that can indeed be achieved one day.

7 CONCLUSIONS

In this paper we demonstrated the creation of a system to quickly
author visualizations using pen-based interactions. This system,
NapkinVis, used a work-flow that required the user to first author
individual marks, and then combine them in a compound
visualization. It was also able to utilize the concept of 'anchors'
from Protovis to help guide the placement of marks. As a result,
this system was able to quickly generate basic visualizations as
well as provide functionality to compose a wide variety of new
visualizations, in under a minute each in most cases.

ACKNOWLEDGEMENTS

I would like to thank Tamara Munzner for her helpful suggestions
throughout the various stages of this project.

REFERENCES

[1] M. Chuah et al. Sketching, Searching, and Customizing
Visualizations: a Content-based Approach to Design Retrieval.
Intelligent Multimedia Information Retrieval, 83-111, 1997.

[2] eToys, www.squeakland.org (accessed on October 28, 2009)
[3] E. Ernerfeldt. Master's Thesis: Phun. Umea University, 2008.
[4] Stolte, C. et al. Polaris: A System for Query, Analysis, and

Visualization of Multidimensional Relational Databases. IEEE
Transactions on Visualization and Computer Graphics, 8:1, January-
March 2002

[5] M. Bostock and J. Heer, Protovis: A Graphical Toolkit for
Visualization. October 2009

[6] J. Heer et al. Prefuse: a toolkit for interactive information
visualization. Proceedings of the SIGCHI conference on Human
factors in computing systems, 2005.

[7] Flare, flare.prefuse.org (accessed on October 28, 2009)
[8] J. Fekete. The InfoVis Toolkit. IEEE Symposium on Information

Visualization, 2004
[9] W. Schroeder et al. The Visualization Toolkit: An Object-Oriented

Approach To 3D Graphics, Kitware, 2002
[10] JavaScript Infovis Toolkit, thejit.org (accessed on October 28, 2009)
[11] Processing, processing.org (accessed on October 28, 2009)
[12] Willett et al. Scented Widgets: Improving Navigation Cues with

Embedded Visualizations. 2007.

	1 Introduction
	2 Related Work
	3 Overview
	3.1 Work-flow
	3.2 Elements of NapkinVis
	3.2.1 Main Canvas
	3.2.2 Strokes
	3.2.3 Proto-Objects
	3.2.4 Gestures
	3.2.5 File Opener
	3.2.6 Data
	3.2.7 Data Actor
	3.2.8 Single-Mark Visualization
	3.2.9 Compound Visualization

	3.3 Summary of Interaction

	4 Implementation
	4.1 External Ideas
	4.1.1 Scented Widgets
	4.1.2 Stroke and Object Promotion
	4.1.3 Visualization as a Composite of Marks
	4.1.4 Levenshtein Distance for Gesture Recognition

	4.2 External Libraries
	4.2.1 Protovis Toolkit

	4.3 Implemented Components
	4.3.1 Drawing Canvas
	4.3.2 Gestures
	4.3.3 File Opener and File Parser
	4.3.4 Visualization for data actor
	4.3.5 Canonical Visualizations for Marks
	4.3.6 Hit Detection
	4.3.7 Compound Visualization

	5 Results
	5.1 Towards Single-Mark Visualizations
	5.2 Compound Visualizations: Creating an Example Stacked-Bar Chart
	5.3 Compound Visualizations: Extending the Stacked Bar Chart
	5.4 Some Sample Visualizations

	6 Discussion and Future Work
	6.1.1 Strengths
	6.1.2 Weaknesses
	6.1.3 Future Work

	7 Conclusions

